RESUMEN
Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, ß-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited ß-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. ß-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.
Asunto(s)
Autofagia , Melanosomas , Melanosomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Xantonas , Melanoma Experimental , Animales , RatonesRESUMEN
Acetylcholinesterase (AChE) inhibitors cause insect death by preventing the hydrolysis of the neurotransmitter acetylcholine, which overstimulates the nervous system. In this study, isorhapontin, isolated from E. globulus leaves, was evaluated as a natural insecticide with AChE inhibition at 12.5 µM. Using kinetic analyses, we found that isorhapontin acted as a competitive inhibitor that binds to the active site of AChE. The inhibition constant (Ki) was 6.1 µM. Furthermore, isorhapontin and resveratrol, which have basic skeletons, were predicted to bind to the active site of AChE via molecular docking. A comparison of the hydrogen bonding between the two stilbenes revealed characteristic differences in their interactions with amino acids. In isorhapontin, Trp83, Gly149, Tyr162, Tyr324, and Tyr370 interacted with the sugar moiety. These results suggest that with further development, isorhapontin can be used as an insecticide alternative.
Asunto(s)
Eucalyptus , Insecticidas , Estilbenos , Acetilcolinesterasa/metabolismo , Insecticidas/farmacología , Simulación del Acoplamiento Molecular , Eucalyptus/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Hojas de la Planta/metabolismoRESUMEN
Spinach (Spinacia oleracea) is one of the most famous vegetables worldwide, rich in essential metabolites for various health benefits. It is a valuable plant source that has the potential to be a nutraceutical. This study aimed to evaluate the single characteristic marker compound to establish the validation of HPLC-DAD methods applied to the development of a nutraceutical using spinach samples. Six metabolites (1-6) were identified from the spinach samples such as freeze-dried spinach (FDS) and spinach extract concentrate (SEC) by LC-Q-TOF/MS analysis. Among the six metabolites, 3',4',5-trihydroxy-3-methoxy-6,7-methylenedioxyflavone 4'-glucuronide (TMG) was selected as a marker compound due to its highest abundance and high selectivity. The specificity, accuracy, linearity, precision, repeatability, limit of detection (LOD), and limit of quantification (LOQ) of TMG in the spinach samples (FDS and SEC) were validated according to AOAC international guideline. The specificity was confirmed by monitoring the well separation of the marker compound from other compounds of spinach samples in the base peak intensity (BPI) and ultraviolet (UV) chromatogram. The calibration curve of TMG (15.625~500 µg/mL) had reasonable linearity (R2 = 0.999) considered with LOD and LOQ values, respectively. Recovery rate of TMG was 93-101% for FDS and 90-95% for SEC. The precision was less than 3 and 6% in the intraday and interday. As a result, the HPLC-DAD validation method of TMG in the spinach samples (FDS and SEC) was first established with AOAC and KFDA regulations for approving functional ingredients in functional foods.
Asunto(s)
Spinacia oleracea , Spinacia oleracea/química , Cromatografía Líquida de Alta Presión/métodos , Glucurónidos/análisis , Glucurónidos/química , Límite de Detección , Reproducibilidad de los Resultados , Flavonoides/análisis , Flavonoides/química , Extractos Vegetales/química , Extractos Vegetales/análisis , Flavonas/análisis , Flavonas/química , Estándares de ReferenciaRESUMEN
Gut microbes play diverse roles in modulating host fitness, including longevity; however, the molecular mechanisms underlying their mediation of longevity remain poorly understood. We performed genome-wide screens using 3,792 Escherichia coli mutants and identified 44 E. coli mutants that modulated Caenorhabditis elegans longevity. Three of these mutants modulated C. elegans longevity via the bacterial metabolite methylglyoxal (MG). Importantly, we found that low MG-producing E. coli mutants, Δhns E. coli, extended the lifespan of C. elegans through activation of the DAF-16/FOXO family transcription factor and the mitochondrial unfolded protein response (UPRmt). Interestingly, the lifespan modulation by Δhns did not require insulin/insulin-like growth factor 1 signaling (IIS) but did require TORC2/SGK-1 signaling. Transcriptome analysis revealed that Δhns E. coli activated novel class 3 DAF-16 target genes that were distinct from those regulated by IIS. Taken together, our data suggest that bacteria-derived MG modulates host longevity through regulation of the host signaling pathways rather than through nonspecific damage on biomolecules known as advanced glycation end products. Finally, we demonstrate that MG enhances the phosphorylation of hSGK1 and accelerates cellular senescence in human dermal fibroblasts, suggesting the conserved role of MG in controlling longevity across species. Together, our studies demonstrate that bacteria-derived MG is a novel therapeutic target for aging and aging-associated pathophysiology.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Factores de Transcripción Forkhead/metabolismo , Longevidad/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvaldehído , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Modelos Biológicos , Piruvaldehído/metabolismo , Piruvaldehído/farmacología , Transducción de Señal/efectos de los fármacos , Transcriptoma/genéticaRESUMEN
Abnormal activation of receptor tyrosine kinases (RTKs) contributes to tumorigenesis, while protein tyrosine phosphatases (PTPs) contribute to tumor control. One of the most representative PTPs is Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1), which is associated with either an increased or decreased survival rate depending on the cancer type. Hypermethylation in the promoter region of PTPN6, the gene for the SHP-1 protein, is a representative epigenetic regulation mechanism that suppresses the expression of SHP-1 in tumor cells. SHP-1 comprises two SH2 domains (N-SH2 and C-SH2) and a catalytic PTP domain. Intramolecular interactions between the N-SH2 and PTP domains inhibit SHP-1 activity. Opening of the PTP domain by a conformational change in SHP-1 increases enzymatic activity and contributes to a tumor control phenotype by inhibiting the activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathway. Although various compounds that increase SHP-1 activation or expression have been proposed as tumor therapeutics, except sorafenib and its derivatives, few candidates have demonstrated clinical significance. In some cancers, SHP-1 expression and activation contribute to a tumorigenic phenotype by inducing a tumor-friendly microenvironment. Therefore, developing anticancer drugs targeting SHP-1 must consider the effect of SHP-1 on both cell biological mechanisms of SHP-1 in tumor cells and the tumor microenvironment according to the target cancer type. Furthermore, the use of combination therapies should be considered.
Asunto(s)
Carcinogénesis , Epigénesis Genética , Humanos , Terapia Combinada , Dominio Catalítico , Quinasas Janus , Microambiente TumoralRESUMEN
This study aimed to isolate bacterial neuraminidase (BNA) inhibitory O-methylated quercetin derivatives from the aerial parts of S. pubescens. All the isolated compounds were identified as O-methylated quercetin (1-4), which were exhibited to be noncompetitive inhibitors against BNA, with IC50 ranging from 14.0 to 84.1 µM. The responsible compounds (1-4) showed a significant correlation between BNA inhibitory effects and the number of O-methyl groups on quercetin; mono (1, IC50 = 14.0 µM) > di (2 and 3, IC50 = 24.3 and 25.8 µM) > tri (4, IC50 = 84.1 µM). In addition, the binding affinities between BNA and inhibitors (1-4) were also examined by fluorescence quenching effect with the related constants (KSV, KA, and n). The most active inhibitor 1 possessed a KSV with 0.0252 × 105 L mol-1. Furthermore, the relative distribution of BNA inhibitory O-methylated quercetins (1-4) in S. pubescens extract was evaluated using LC-Q-TOF/MS analysis.
Asunto(s)
Asteraceae , Quercetina , Quercetina/farmacología , Neuraminidasa , Sigesbeckia , Asteraceae/química , Componentes Aéreos de las Plantas , Extractos Vegetales/farmacologíaRESUMEN
In this study, we investigated the depigmentation effect of Amorpha fruticosa L. root extract (RE), an herbal medicine. A. fruticosa RE significantly induced depigmentation in α-MSH-treated B16F10 cells at noncytotoxic concentrations. Further, the RE decreased the protein levels of the melanosomal proteins Tyr and Pmel without decreasing their transcript levels. We found that MG132, a proteasome complex inhibitor, was unable to rescue the protein levels, but PepA/E-64D (a lysosomal enzyme inhibitor), 3-MA (a representative autophagy inhibitor), and ATG5 knockdown effectively rescued the protein levels and inhibited the depigmentation effect following RE treatment. Among rotenoids, amorphigenin composed in the RE was identified as a functional chemical that could induce depigmentation; whereas rapamycin, an mTOR inhibitor and a nonselective autophagy inducer, could not induce depigmentation, and amorphigenin effectively induced depigmentation through the degradation of melanosomal proteins. Amorphigenin activated AMPK without affecting mTOR, and knockdown of AMPK offset the whitening effect through degradation of melanosome proteins by amorphigenin. Results from this study suggested that amorphigenin can induce degradation of the melanosome through an AMPK-dependent autophagy process, and has the potential to be used as a depigmentation agent for the treatment of hyperpigmentation.
RESUMEN
In this study, the changes in free amino acids of soybean leaves after ethylene application were characterized based on quantitative and metabolomic analyses. All essential and nonessential amino acids in soybean leaves were enhanced by fivefold (250 to 1284 mg/100 g) and sixfold (544 to 3478 mg/100 g), respectively, via ethylene application. In particular, it was found that asparagine is the main component, comprising approximately 41% of the total amino acids with a twenty-five fold increase (78 to 1971 mg/100 g). Moreover, arginine and branched chain amino acids (Val, Leu, and Ile) increased by about 14 and 2-5 times, respectively. The increase in free amino acid in stem was also similar to the leaves. The metabolites in treated and untreated soybean leaves were systematically identified by gas chromatography-mass spectrometry (GC-MS), and partial variance discriminant analysis (PLS-DA) scores and heat map analysis were given to understand the changes of each metabolite. The application of ethylene may provide good nutrient potential for soybean leaves.
Asunto(s)
Aminoácidos/metabolismo , Etilenos/metabolismo , Glycine max/química , Aminoácidos/química , Análisis Discriminante , Etilenos/química , Cromatografía de Gases y Espectrometría de Masas , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Glycine max/metabolismoRESUMEN
Xanthine oxidase is a frontier enzyme to produce oxidants, which leads to inflammation in the blood. Prenylated isoflavones from Flemingia philippinensis were found to display potent inhibition against xanthine oxidase (XO). All isolates (1-9) inhibited XO enzyme with IC50 ranging 7.8~36.4 µM. The most active isoflavones (2-5, IC50 = 7.8~14.8 µM) have the structural feature of a catechol motif in B-ring. Inhibitory behaviors were disclosed as a mixed type I mode of inhibition with KI < KIS. Binding affinities to XO enzyme were evaluated. Fluorescence quenching effects agreed with inhibitory potencies (IC50s). The compounds (2-5) also showed potent anti-LDL oxidation effects in the thiobarbituric acid-reactive substances (TBARS) assay, the lag time of conjugated diene formation, relative electrophoretic mobility (REM), and fragmentation of apoB-100 on copper-mediated LDL oxidation. The compound 4 protected LDL oxidation with 0.7 µM in TBARS assay, which was 40-fold more active than genistein (IC50 = 30.4 µM).
Asunto(s)
Fabaceae/química , Isoflavonas/análisis , Isoflavonas/farmacología , Lipoproteínas LDL/metabolismo , Raíces de Plantas/química , Tiobarbitúricos/química , Xantina Oxidasa/antagonistas & inhibidores , Cromatografía Liquida , Cobre/química , Inhibidores Enzimáticos/química , Fluorescencia , Concentración 50 Inhibidora , Isoflavonas/química , Isoflavonas/aislamiento & purificación , Cinética , Espectrometría de Masas , Oxidación-Reducción , Extractos Vegetales/química , Extractos Vegetales/farmacología , Prenilación , Xantina Oxidasa/metabolismoRESUMEN
Anti-melanogenesis effects of silymarin from milk thistle have been reported recently, but detailed tyrosinase inhibition properties of individual components have not been investigated. This study purported to substantiate tyrosinase inhibition and its mechanism based on a single metabolite. The responsible components for tyrosinase inhibition of target source were found out as flavonolignans which consist of isosilybin A (1), isosilybin B (2), silydianin (3), 2,3-dihydrosilychristin (4), silychristin A (5), silychristin B (6) and silybin (7), respectively. The isolated flavonolignans (1-7) inhibited both monophenolase (IC50â¯=â¯1.7-7.6⯵M) and diphenolase (IC50â¯=â¯12.1-44.9⯵M) of tyrosinase significantly. Their inhibitions were 10-fold effective in comparison with their mother skeletons (8-10). Inhibitory functions were also proved by HPLC analysis using N-acetyl-l-tyrosine as substrate. The predominant formation of Emet·I was confirmed from a long prolongation of lag time and a decrease of the static state activity of the enzyme. All tested compounds had a significant binding affinity to tyrosinase with KSV values of 0.06-0.27â¯×â¯104â¯L·mol-1, which are well correlated with IC50s. In kinetic study, all flavonolignan (1-7) were mixed type I (KIâ¯<â¯KIS) inhibitors, whereas their mother skeletons (8-10) were competitive ones. The UPLC-ESI-TOF/MS analysis showed that the isolated inhibitors are the most abundant metabolites in the target plant.
Asunto(s)
Flavonoides/metabolismo , Monofenol Monooxigenasa/metabolismo , Silybum marianum/química , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Flavonoides/química , Cinética , Silybum marianum/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Oxidación-Reducción , Extractos Vegetales/química , Semillas/química , Semillas/metabolismo , Silimarina/análogos & derivados , Silimarina/análisis , Silimarina/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato , Tirosina/química , Tirosina/metabolismoRESUMEN
In the course of an investigation of human neutrophil elastase (HNE) associated with inflammation, the extract of the flower parts of Hypericum ascyron showed a significant influence to HNE. The responsible metabolites to HNE inhibition were found to be eight polyprenylated acylphloroglucinols, PPAPs (1-8) which showed IC50 ranges between 2.4 and 19.9⯵M. This is the first report to demonstrate that PPAP skeleton exhibits potent HNE inhibition. The compounds 1-3 were characterized and newly named as ascyronone E (IC50â¯=â¯4.3⯵M), ascyronone F (IC50â¯=â¯19.9⯵M), ascyronone G (IC50â¯=â¯4.5⯵M) based on 2D-NMR spectroscopic data. In the kinetic analysis of double reciprocal plots, all the compounds showed noncompetitive behaviors to HNE enzyme with the remaining of Km and the increase of Vmax. The binding affinity levels (KSV) by using fluorescence were sufficient to be able to prove that PPAPs (1-8) had compliant interaction with inhibitory potencies.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Flores/química , Elastasa de Leucocito/antagonistas & inhibidores , Floroglucinol/química , Extractos Vegetales/farmacología , Inhibidores Enzimáticos/química , Humanos , Estructura MolecularRESUMEN
This study aimed to search the α-glucosidase inhibitors from the barks part of Artocarpus elasticus. The responsible compounds for α-glucosidase inhibition were found out as dihydrobenzoxanthones (1-4) and alkylated flavones (5-6). All compounds showed a significant enzyme inhibition toward α-glucosidase with IC50s of 7.6-25.4 µM. Dihydrobenzoxanthones (1-4) exhibited a competitive inhibition to α-glucosidase. This competitive behaviour was fully characterised by double reciprocal plots, Yang's method, and time-dependent experiments. The compound 1 manifested as the competitive and reversible simple slow-binding, with kinetic parameters k3 = 0.0437 µM-1 min-1, k4 = 0.0166 min-1, and Kiapp = 0.3795 µM. Alkylated flavones (5-6) were mixed type I (KI < KIS) inhibitors. The binding affinities (KSV) represented by all inhibitors were correlated to their concentrations and inhibitory potencies (IC50). Moreover, compounds 1 and 5 were identified as new ones named as artoindonesianin W and artoflavone B, respectively. Molecular modelling study proposed the putative binding conformation of competitive inhibitors (1-4) to α-glucosidase at the atomic level.
Asunto(s)
Artocarpus/química , Inhibidores de Glicósido Hidrolasas/farmacología , Corteza de la Planta/química , Xantonas/farmacología , alfa-Glucosidasas/metabolismo , Relación Dosis-Respuesta a Droga , Fluorescencia , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Estructura Molecular , Relación Estructura-Actividad , Xantonas/química , Xantonas/aislamiento & purificaciónRESUMEN
In this study, the inhibitory potential of bacterial neuraminidase (NA) was observed on the leaves of Epimedium koreanum Nakai, which is a popular ingredient in traditional herbal medicine. This study attempted to isolate the relevant, responsible metabolites and elucidate their inhibition mechanism. The methanol extraction process yielded eight flavonoids (1â»8), of which compounds 7 and 8 were new compounds named koreanoside F and koreanoside G, respectively. All the compounds (1â»8) showed a significant inhibition to bacterial NA with IC50 values of 0.17â»106.3 µM. In particular, the prenyl group on the flavonoids played a critical role in bacterial NA inhibition. Epimedokoreanin B (compound 1, IC50 = 0.17 µM) with two prenyl groups on C8 and C5' of luteolin was 500 times more effective than luteolin (IC50 = 85.6 µM). A similar trend was observed on compound 2 (IC50 = 0.68 µM) versus dihydrokaempferol (IC50 = 500.4 µM) and compound 3 (IC50 = 12.6 µM) versus apigenin (IC50 = 107.5 µM). Kinetic parameters (Km, Vmax, and Kik/Kiv) evaluated that all the compounds apart from compound 5 showed noncompetitive inhibition. Compound 5 was proven to be a mixed type inhibitor. In an enzyme binding affinity experiment using fluorescence, affinity constants (KSV) were tightly related to inhibitory activities.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Epimedium/química , Flavonoides/farmacología , Neuraminidasa/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Flavonoides/química , Concentración 50 Inhibidora , Estructura Molecular , Neopreno/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/químicaRESUMEN
BACKGROUND: Tumor-associated (TA) autoantibodies, which are generated by the immune system upon the recognition of abnormal TA antigens, are promising biomarkers for the early detection of tumors. In order to detect autoantibody biomarkers effectively, antibody-specific epitopes in the diagnostic test should maintain the specific conformations that are as close as possible to those presenting in the body. However, when using patients' serum as a source of TA autoantibodies the characterization of the autoantibody-specific epitope is not easy due to the limited amount of patient-derived serum. METHODS: To overcome these limits, we constructed a B cell hybridoma pool derived from a hepatocellular carcinoma (HCC) model HBx-transgenic mouse and characterized autoantibodies derived from them as tumor biomarkers. Their target antigens were identified by mass spectrometry and the correlations with HCC were examined. With the assumption that TA autoantibodies generated in the tumor mouse model are induced in human cancer patients, the enzyme-linked immunosorbent assays (ELISA) based on the characteristics of mouse TA autoantibodies were developed for the detection of autoantibody biomarkers in human serum. To mimic natural antigenic structures, the specific epitopes against autoantibodies were screened from the phage display cyclic random heptapeptide library, and the streptavidin antigens fused with the specific epitopes were used as coating antigens. RESULTS: In this study, one of HCC-associated autoantibodies derived from HBx-transgenic mouse, XC24, was characterized. Its target antigen was identified as splicing factor 3b subunit 1 (SF3B1) and the high expression of SF3B1 was confirmed in HCC tissues. The specific peptide epitopes against XC24 were selected and, among them, XC24p11 cyclic peptide (-CDATPPRLC-) was used as an epitope of anti-SF3B1 autoantibody ELISA. With this epitope, we could effectively distinguish between serum samples from HCC patients (n = 102) and healthy subjects (n = 85) with 73.53% sensitivity and 91.76% specificity (AUC = 0.8731). Moreover, the simultaneous detection of anti-XC24p11 epitope autoantibody and AFP enhanced the efficiency of HCC diagnosis with 87.25% sensitivity and 90.59% specificity (AUC = 0.9081). CONCLUSIONS: ELISA using XC24p11 peptide epitope that reacts against anti-SF3B1 autoantibody can be used as a novel test to enhance the diagnostic efficiency of HCC.
Asunto(s)
Autoanticuerpos/sangre , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/diagnóstico , Fosfoproteínas/inmunología , Factores de Empalme de ARN/inmunología , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Epítopos/metabolismo , Humanos , Ratones Transgénicos , Péptidos/química , Fosfoproteínas/sangre , Factores de Empalme de ARN/sangre , Estreptavidina/metabolismo , Transactivadores/metabolismo , Proteínas Reguladoras y Accesorias Virales , alfa-Fetoproteínas/metabolismoRESUMEN
Flemingia philippinensis has been used throughout history to cure rheumatism associated with neutrophil elastase (NE). In this study, we isolated sixteen NE inhibitory flavonoids (1-16), including the most potent and abundant prenyl isoflavones (1-9), from the F. philippinensis plant. These prenyl isoflavones (2, 3, 5, 7, and 9) competitively inhibited NE, with IC50 values of 1.3-12.0⯵M. In addition, they were reversible, simple, slow-binding inhibitors according to their respective parameters. Representative compound 3 had an IC50â¯=â¯1.3⯵M, k3â¯=â¯0.04172⯵M-1â¯min-1, k4â¯=â¯0.0064â¯min-1, and Kiappâ¯=â¯0.1534⯵M. The Kik/Kiv ratios (18.5â¯â¼â¯24.6) for compound 3 were consistent with typical competitive inhibitors. The prenyl functionality of isoflavones significantly affected inhibitory potencies and mechanistic behavior by shifting the competitive mode to a noncompetitive one. The remaining flavonoids (10-16) were confirmed as mixed type I inhibitors that preferred to bind free enzyme rather than the enzyme-substrate complex. Fluorescence quenching analyses indicated that the inhibitory potency (IC50) closely followed the binding affinity (KSV).
Asunto(s)
Fabaceae/química , Isoflavonas/farmacocinética , Elastasa de Leucocito/antagonistas & inhibidores , Raíces de Plantas/química , Relación Dosis-Respuesta a Droga , Humanos , Isoflavonas/química , Isoflavonas/aislamiento & purificación , Cinética , Elastasa de Leucocito/metabolismo , Estructura Molecular , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Relación Estructura-ActividadRESUMEN
F. philippinensis Merr. et Rolfe has been cultivated on a large scale and is widely consumed by local inhabitants as an important nutraceutical, especially against rheumatism which has a deep connection with antioxidants. In this study, a total of 18 different phenolic metabolite compounds in F. philippinensis were isolated and identified, and evaluated for their antioxidant and DNA damage protection potential. The antioxidant activity of the 18 identified compounds was screened using DPPH, ORAC, hydroxyl and superoxide radical scavenging assays. The antioxidant potential of the compounds was found to differ by functionality and skeleton. However, most compounds showed a good antioxidant potential. In particular, seven of the identified compounds, namely, compounds 2, 3, 6, 10, 11, 15 and 16, showed significant protective effects on pBR322 plasmid DNA against the mutagenic and toxic effects of Fenton's reaction. The most active compound, compound 2, displayed a dose-dependent DNA damage protection potential in the range of 7.5~60.0 µM. The DNA damage protective effect of the identified compounds was significantly correlated with the hydroxyl radical scavenging activity. Compounds that exhibited effective (IC50 = 5.4~12.5 µg/mL) hydroxyl radical scavenging activity were found to be the ones with higher DNA damage protection potential.
Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Fabaceae/química , Fenoles/química , Fenoles/farmacología , Daño del ADN/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón , Depuradores de Radicales Libres/química , Extractos Vegetales/química , Extractos Vegetales/farmacologíaRESUMEN
Mannosylphosphorylated glycans are found only in fungi, including yeast, and the elimination of mannosylphosphates from glycans is a prerequisite for yeast glyco-engineering to produce human-compatible glycoproteins. In Saccharomyces cerevisiae, MNN4 and MNN6 genes are known to play roles in mannosylphosphorylation, but disruption of these genes does not completely remove the mannosylphosphates in N-glycans. This study was performed to find unknown key gene(s) involved in N-glycan mannosylphosphorylation in S. cerevisiae. For this purpose, each of one MNN4 and five MNN6 homologous genes were deleted from the och1Δmnn1Δmnn4Δmnn6Δ strain, which lacks yeast-specific hyper-mannosylation and the immunogenic α(1,3)-mannose structure. N-glycan profile analysis of cell wall mannoproteins and a secretory recombinant protein produced in mutants showed that the MNN14 gene, an MNN4 paralog with unknown function, is essential for N-glycan mannosylphosphorylation. Double disruption of MNN4 and MNN14 genes was enough to eliminate N-glycan mannosylphosphorylation. Our results suggest that the S. cerevisiae och1Δmnn1Δmnn4Δmnn14Δ strain, in which all yeast-specific N-glycan structures including mannosylphosphorylation are abolished, may have promise as a useful platform for glyco-engineering to produce therapeutic glycoproteins with human-compatible N-glycans.
Asunto(s)
Manosa/metabolismo , Proteínas de la Membrana/genética , Ingeniería Metabólica , Polisacáridos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Pared Celular/metabolismo , Humanos , Manosa/química , Manosa/genética , Manosafosfatos/metabolismo , Manosiltransferasas/deficiencia , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación , Proteínas Recombinantes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Protein tyrosine phosphatase 1B (PTP1B) is an important target to treat obesity and diabetes due to its key roles in insulin and leptin signaling. The MeOH extracts of the root bark of Flemingia philippinensis yielded eight inhibitory molecules (1-8) capable of targeting PTP1B. Three of them were identified to be novel compounds, philippin A (1), philippin B (2), and philippin C (3) which have a rare 3-phenylpropanoyl chromenedione skeleton. The other compounds (4-8) were known prenylated isoflavones. All compounds (1-8) inhibited PTP1B in a dose dependent manner with IC50s ranging between 2.4 and 29.4µM. The most potent compound emerged to be prenylated isoflavone 5 (IC50=2.4µM). In kinetic studies, chromenedione derivatives (1-3) emerged to be reversible, competitive inhibitors, whereas prenylated isoflavones (5-8) were noncompetitive inhibitors.
Asunto(s)
Fabaceae/química , Flavonas/química , Hemiterpenos/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Flavonas/aislamiento & purificación , Hemiterpenos/aislamiento & purificación , Cinética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/químicaRESUMEN
Tyrosinase inhibition may be a means to alleviate not only skin hyperpigmentation but also neurodegeneration associated with Parkinson's disease. In the course of metabolite analysis from tyrosinase inhibitory methanol extract (80% inhibition at 20 µg/ml) of Campylotropis hirtella, we isolated fourteen phenolic compounds, among which neorauflavane 3 emerged as a lead structure for tyrosinase inhibition. Neorauflavane 3 inhibited tyrosinase monophenolase activity with an IC50 of 30 nM. Thus this compound is 400-fold more active than kojic acid. It also inhibited diphenolase (IC50=500 nM), significantly. Another potent inhibitor 1 (IC50=2.9 µM) was found to be the most abundant metabolite in C. hirtella. In kinetic studies, compounds 3 showed competitive inhibitory behavior against both monophenolase and diphenolase. It manifested simple reversible slow-binding inhibition against monophenolase with the following kinetic parameters: Ki(app)=1.48 nM, k3=0.0033 nM(-1) min(-1) and k4=0.0049 min(-1). Neorauflavane 3 efficiently reduced melanin content in B16 melanoma cells with 12.95 µM of IC50. To develop a pharmacophore model, we explored the binding mode of neuroflavane 3 in the active site of tyrosinase. Docking results show that resorcinol motif of B-ring and methoxy group in A-ring play crucial roles in the binding the enzyme.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Fabaceae/química , Isoflavonas/farmacología , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Isoflavonas/química , Isoflavonas/aislamiento & purificación , Melaninas/biosíntesis , Ratones , Estructura Molecular , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/metabolismo , Relación Estructura-Actividad , Células Tumorales CultivadasRESUMEN
NDR (nuclear Dbf2-related) kinases are essential components for polarized morphogenesis, cytokinesis, cell proliferation, and apoptosis. The NDR kinase Cbk1 is required for the hyphal growth of Candida albicans; however, the molecular functions of Cbk1 in hyphal morphogenesis are largely unknown. Here, we report that Cbk1 downregulates the transcriptional repressor Nrg1 through the mRNA-binding protein Ssd1, which has nine Cbk1 phosphorylation consensus motifs. We found that deletion of SSD1 partially suppressed the defective hyphal growth of the C. albicans cbk1Δ/Δ mutant and that Ssd1 physically interacts with Cbk1. Cbk1 was required for Ssd1 localization to polarized growth sites. The phosphomimetic SSD1 allele (ssd1-9E) allowed the cbk1Δ/Δ mutant to form short hyphae, and the phosphodeficient SSD1 allele (ssd1-9A) resulted in shorter hyphae than did the wild-type SSD1 allele, indicating that Ssd1 phosphorylation by Cbk1 is important for hyphal morphogenesis. Furthermore, we show that the transcriptional repressor Nrg1 does not disappear during hyphal initiation in the cbk1Δ/Δ mutant but is completely absent in the cbk1Δ/Δ ssd1Δ/Δ double mutant. Deletion of SSD1 also increased Als3 expression and internalization of the cbk1Δ/Δ mutant in the human embryonic kidney cell line HEK293T. Collectively, our results suggest that one of the functions of Cbk1 in the hyphal morphogenesis of C. albicans is to downregulate Nrg1 through Ssd1.