Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Environ Manage ; 358: 120805, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599085

RESUMEN

Soil monitoring in abandoned mine areas is important from the perspective of ecological and human health risk. Arsenic (As) is a predominant metalloid contaminant in abandoned mine area and its behavior has been influenced by various soil characteristics. Bioindicator can be a useful tool in terms of testing the extent to which they are uptaken by plants bioavailability. Eighteen soils near the mine tailings dam were collected to investigate the effect of As contamination on As absorption by Brassica juncea. The pH range of the experimental soils was between 4.90 and 8.55, and the total As concentrations were between 34 mg kg-1 and 3017 mg kg-1. The bioavailability of As was evaluated by Olsen method, and B. juncea was cultivated in eighteen soils for 3 weeks. Principal component analysis, correlation, and multiple regression analysis were performed to estimate a significant factor affecting As uptake by B. juncea. All statistical results indicated that As bioavailability in soil is the main factor affecting As uptake in root and shoot of B. juncea. Although translocation process, the amount of As in shoot was exponentially explained by As bioavailability in soil. This result suggests that the contamination and bioavailability of As can be confirmed only by analyzing the shoot of B. juncea, which is be easily found in environmental ecosystem, and implies the applicability of B. juncea as a bioindicator for the monitoring of As contamination and its behavior in soil ecosystem.


Asunto(s)
Arsénico , Monitoreo del Ambiente , Minería , Planta de la Mostaza , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Planta de la Mostaza/metabolismo , Suelo/química , Arsénico/análisis , Arsénico/metabolismo , Monitoreo del Ambiente/métodos
2.
Nano Lett ; 22(3): 1059-1066, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35084865

RESUMEN

The orbital degree of freedom, strongly coupled with the lattice and spin, is an important factor when designing correlated functions. Whether the long-range orbital order is stable at reduced dimensions and, if not, what the critical thickness is remains a tantalizing question. Here, we report the melting of orbital ordering, observed by controlling the dimensionality of the canonical eg1 orbital system LaMnO3. Epitaxial films are synthesized with vertically aligned orbital ordering planes on an orthorhombic substrate, so that reducing film thickness changes the two-dimensional planes into quasi-one-dimensional nanostrips. The orbital order appears to be suppressed below the critical thickness of about six unit cells by changing the characteristic phonon modes and making the Mn d orbital more isotropic. Density functional calculations reveal that the electronic energy instability induced by bandwidth narrowing via the dimensional crossover and the interfacial effect causes the absence of orbital order in the ultrathin thickness.

3.
Small ; 18(9): e2106053, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35038218

RESUMEN

Interlayer coupling between individual unit layers is known to be critical in manipulating the layer-dependent properties of two-dimensional (2D) materials. While recent studies have revealed that several 2D materials with significant degrees of interlayer interaction (such as black phosphorus) show strongly layer-dependent properties, the origin based on the electronic structure is drawing intensive attention along with 2D materials exploration. Here, the direct observation of a highly dispersive single electronic band along the interlayer direction in puckered 2D PdSe2 as an experimental hallmark of strong interlayer couplings is reported. Remarkably large band dispersion along the kz -direction near Fermi level, which is even wider than the in-plane one, is observed by the angle-resolved photoemission spectroscopy measurement. Employing X-ray absorption spectroscopy and density functional theory calculations, it is revealed that the strong interlayer coupling in 2D PdSe2 originates from the unique directional bonding of Pd d orbitals associated with unexpected Pd 4d9 configuration, which consequently plays a decisive role for the strong layer-dependency of the band gap.

4.
Environ Geochem Health ; 43(10): 3953-3966, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33768350

RESUMEN

Mine waste from abandoned mines poses a risk to soil ecosystems due to the dispersion of arsenic (As) in the mine waste to the nearby soil environment. Because the bioavailability of As varies depending on the As chemical fraction and exposure conditions, chemical assessment of As fractions in soil around mine waste is essential to understand their impact on soil ecosystem. Here, six sites around the mine waste were selected for investigating toxic effects of As-contaminant soil on Collembola community. To measure the As chemical fraction in soil and bioavailability, Wenzel sequential extraction employed. Meanwhile, the collembolans that live in each sampling site were identified at the species level, and the characteristics and composition of the collembola community were investigated. The mobility fraction (F1 + F2 + F3; MF) was related to the risk to the collembolan community, and the adverse impact of high MF appeared to lead to a decrease in abundance, richness, and Shannon index. According to non-metric multidimensional scaling analysis, F1, F2, F3, and pH were shown as the significant factor explaining the NMDS space. Especially, the sampling site with the highest concentration of F3 showed statistically different species composition from the other sites. In the case of As-contaminated soil around the old mine waste, the toxic effects of the remaining F3 in soil, as well as that of F1 and F2, should be fully considered. This study suggested that collembolan community could be used for understanding the impact of bioavailable As fraction in the old abandoned mine area.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Arsénico/toxicidad , Ecosistema , Minería , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
5.
Nano Lett ; 19(4): 2243-2250, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30860385

RESUMEN

The requirements of multifunctionality in thin-film systems have led to the discovery of unique physical properties and degrees of freedom, which exist only in film forms. With progress in growth techniques, one can decrease the film thickness to the scale of a few nanometers (∼nm), where its unique physical properties are still pronounced. Among advanced ultrathin film systems, ferroelectrics have generated tremendous interest. As a prototype ferroelectric, the electrical properties of BaTiO3 (BTO) films have been extensively studied, and it has been theoretically predicted that ferroelectricity sustains down to ∼nm thick films. However, efforts toward determining the minimum thickness for ferroelectric films have been hindered by practical issues surrounding large leakage currents. In this study, we used ∼nm thick BTO films, exhibiting semiconducting characteristics, grown on a LaAlO3/SrTiO3 (LAO/STO) heterostructure. In particular, we utilized two-dimensional electron gas at the LAO/STO heterointerface as the bottom electrode in these capacitor junctions. We demonstrate that the BTO film exhibits ferroelectricity at room temperature, even when it is only ∼2 unit-cells thick, and the total thickness of the capacitor junction can be reduced to less than ∼4 nm. Observation of ferroelectricity in ultrathin semiconducting films and the resulting shrunken capacitor thickness will expand the applicability of ferroelectrics in the next generation of functional devices.

6.
J Environ Manage ; 146: 124-130, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25242543

RESUMEN

Spent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp. chinensis Jusl.) was conducted for the biological assessment. When SCG and SCG-char were applied to acid mine drainage, the heavy metal concentrations were decreased and the pH was increased. However, for SCG, the phytotoxicity increased because a massive amount of dissolved organic carbon was released from SCG. In contrast, SCG-char did not exhibit this phenomenon because any easily released organic matter was removed during pyrolysis. While the bioavailable heavy metal content decreased in soils treated with SCG or SCG-char, the phytotoxicity only rose after SCG treatment. According to our statistical methodology, bioavailable Pb, Cu and As, as well as the electrical conductivity representing an increase in organic content, affected the phytotoxicity of soil. Therefore, applying SCG during environment remediation requires careful biological assessments and evaluations of the efficiency of this remediation technology.


Asunto(s)
Café/química , Metales Pesados/química , Contaminantes del Suelo/química , Contaminantes del Agua/química , Adsorción , Carbón Orgánico/química , Restauración y Remediación Ambiental , Humanos , Suelo/química , Administración de Residuos
7.
Environ Int ; 175: 107963, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37192573

RESUMEN

Arsenic (As)-contaminated soil inevitably exists in nature and has become a global challenge for a sustainable future. Current processes for As capture using natural and structurally engineered nanomaterials are neither scientifically nor economically viable. Here, we established a feasible strategy to enhance As-capture efficiency and ecosystem health by structurally reorganizing iron oxyhydroxide, a natural As stabilizer. We propose crystallization to reorganize FeOOH-acetate nanoplatelets (r-FAN), which is universal for either scalable chemical synthesis or reproduction from natural iron oxyhydroxide phases. The r-FAN with wide interlayer spacing immobilizes As species through a synergistic mechanism of electrostatic intercalation and surface chemisorption. The r-FAN rehabilitates the ecological fitness of As-contaminated artificial and mine soils, as manifested by the integrated bioassay results of collembolan and plants. Our findings will serve as a cornerstone for crystallization-based material engineering for sustainable environmental applications and for understanding the interactions between soil, nanoparticles, and contaminants.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Ecosistema , Cristalización , Contaminantes del Suelo/análisis , Suelo/química
8.
J Environ Manage ; 102: 88-95, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22446136

RESUMEN

Production of food crops on metal contaminated agricultural soils is of concern because consumers are potentially exposed to hazardous metals via dietary intake of such crops or crop derived products. Therefore, the current study was conducted to develop management protocols for crop cultivation to allow safer food production. Metal uptake, as influenced by pH change-induced immobilizing agents (dolomite, steel slag, and agricultural lime) and sorption agents (zeolite and compost), was monitored in three common plants representative of leafy (Chinese cabbage), root (spring onion) and fruit (red pepper) vegetables, in a field experiment. The efficiency of the immobilizing agents was assessed by their ability to decrease the phytoavailability of metals (Cd, Pb, and Zn). The fruit vegetable (red pepper) showed the least accumulation of Cd (0.16-0.29 mgkg(-1) DW) and Pb (0.2-0.9 mgkg(-1) DW) in edible parts regardless of treatment, indicating selection of low metal accumulating crops was a reasonable strategy for safer food production. However, safer food production was more likely to be achievable by combining crop selection with immobilizing agent amendment of soils. Among the immobilizing agents, pH change-induced immobilizers were more effective than sorption agents, showing decreases in Cd and Pb concentrations in each plant well below standard limits. The efficiency of pH change-induced immobilizers was also comparable to reductions obtained by 'clean soil cover' where the total metal concentrations of the plow layer was reduced via capping the surface with uncontaminated soil, implying that pH change-induced immobilizers can be practically applied to metal contaminated agricultural soils for safer food production.


Asunto(s)
Inocuidad de los Alimentos , Metales Pesados/química , Contaminantes del Suelo/química , Verduras/metabolismo , Carbonato de Calcio/química , Compuestos de Calcio/química , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Magnesio/química , Metales Pesados/análisis , Metales Pesados/metabolismo , Óxidos/química , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Zeolitas/química
9.
Environ Geochem Health ; 34(3): 337-48, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21850414

RESUMEN

The objectives of this study were to elucidate the effects of soil amendments [Ferrous sulfate (Fe(II)), red mud, Fe(II) with calcium carbonate (Fe(II)/L) or red mud (RM/F), zero-valent iron (ZVI), furnace slag, spent mushroom waste and by-product fertilizer] on arsenic (As) stabilization and to establish relationships between soil properties, As fractions and soil enzyme activities in amended As-rich gold mine tailings (Kangwon and Keumkey). Following the application of amendments, a sequential extraction test and evaluation of the soil enzyme activities (dehydrogenase and ß-glucosidase) were conducted. Weak and negative relationships were observed between water-soluble As fractions (As(WS)) and oxalate extractable iron, while As(WS) was mainly affected by dissolved organic carbon in alkaline tailings sample (Kangwon) and by soil pH in acidic tailings sample (Keumkey). The soil enzyme activities in both tailings were mainly associated with As(WS). Principal component and multiple regression analyses confirmed that As(WS) was the most important factor to soil enzyme activities. However, with some of the treatments in Keumkey, contrary results were observed due to increased water-soluble heavy metals and carbon sources. In conclusion, our results suggest that to simultaneously achieve decreased As(WS) and increased soil enzyme activities, Kangwon tailings should be amended with Fe(II), Fe(II)/L or ZVI, while only ZVI or RM/F would be suitable for Keumkey tailings. Despite the limitations of specific soil samples, this result can be expected to provide useful information on developing a successful remediation strategy of As-contaminated soils.


Asunto(s)
Arsénico/química , Minería , Microbiología del Suelo , Contaminantes del Suelo/química , Suelo/química , Aluminio/química , Arsénico/análisis , Oro/química , Hierro/química , Compuestos Orgánicos/química , Oxidorreductasas/metabolismo , Análisis de Componente Principal , Análisis de Regresión , República de Corea , Contaminantes del Suelo/análisis , beta-Glucosidasa/metabolismo
10.
J Environ Sci Health B ; 47(1): 22-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22022785

RESUMEN

The fate of the acidic organic solute from the soil-water-solvent system is not well-understood. In this study, the effect of the acidic functional group of organic solute in the sorption from cosolvent system was evaluated. The sorption of naphthalene (NAP) and 1-naphthoic acid (1-NAPA) by three kaolinitic soils and two model sorbents (kaolinite and humic acid) were measured as functions of the methanol volume fractions (f (c) ≤ 0.4) and ionic compositions (CaCl(2) and KCl). The solubility of 1-NAPA was also measured in various ionic compositions. The sorption data were interpreted using the cosolvency-induced sorption model. The K (m) values (= the linear sorption coefficient) of NAP with kaolinitic soil for both ionic compositions was log linearly decreased with f (c). However, the K (m) values of 1-NAPA with both ionic compositions remained relatively constant over the f (c) range. For the model sorbent, the K (m) values of 1-NAPA with kaolinite for the KCl system and with humic acid for both ionic compositions decreased with f (c), while the sorption of 1-NAPA with kaolinite for the CaCl(2) system was increased with f (c). From the solubility data of 1-NAPA with f (c), no significant difference was observed with the different ionic compositions, indicating an insignificant change in the aqueous activity of the liquid phase. In conclusion, the enhanced 1-NAPA sorption, greater than that predicted from the cosolvency-induced model, was due to an untraceable interaction between the carboxylate and hydrophilic soil domain in the methanol-water system. Therefore, in order to accurately predict the environmental fate of acidic pesticides and organic solutes, an effort to quantitatively incorporate the enhanced hydrophilic sorption into the current cosolvency-induced sorption model is required.


Asunto(s)
Caolín/química , Compuestos Orgánicos/química , Contaminantes del Suelo/química , Adsorción , Cinética , Metanol , Suelo/química , Solubilidad , Agua
11.
Exp Appl Acarol ; 54(3): 243-59, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21359626

RESUMEN

Laboratory bioassays were conducted to evaluate the sublethal effects of fenpyroximate and pyridaben on life-table parameters of two predatory mites species, Neoseiulus (= Amblyseius) womersleyi and Phytoseiulus persimilis. In these assays, young adult females were treated with three sublethal concentrations of each acaricide. The life-table parameters were calculated at each acaricide concentration, and compared using bootstrap procedures. For each acaricide, the LC(50) estimates for both species were similar, yet the two species exhibited completely different susceptibility when the population growth rate was used as the endpoint. Exposure to both acaricides reduced the net reproduction rate (R (o)) in a concentration-dependent manner and their EC(50)s were equivalent to less than LC(7). Two different scales of population-level endpoints were estimated to compare the total effect between the species and treatments: the first endpoint values were based on the net reproductive rate (fecundity λ) and the second endpoint values incorporated the mean egg hatchability into the net reproductive rate (vitality λ). The fecundity λ decreased in a concentration-dependent manner for both acaricide treatments, but the vitality λ decreased abruptly after treatment of N. womersleyi with pyridaben. The change in the patterns of λ revealed that the acaricide effects at the population level strongly depended on the life-history characteristics of the predatory mite species and the chemical mode of action. When the total effects of the two acaricides on N. womersleyi and P. persimilis were considered, fenpyroximate was found to be the most compatible acaricide for the augmentative release of N. womersleyi after treatment.


Asunto(s)
Acaricidas , Benzoatos , Ácaros , Pirazoles , Piridazinas , Animales , Femenino , Fertilidad/efectos de los fármacos , Control de Plagas , Especificidad de la Especie
12.
Chemosphere ; 275: 130095, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33662718

RESUMEN

Biochar application to As-contaminated soil can alter various soil chemical properties, and it can affect available As, plant As uptake, and As phytotoxicity. Increased dissolved organic carbon (DOC) and P released from biochar affect As behavior in the soil system. In this study, we evaluated the effect of biochar application on the chemical properties of soil and phytotoxicity in Brassica juncea using correlation analysis and partial least squares path modeling (PLS-PM). Biochar application increased electrical conductivity (EC), DOC, available P and available As. However, the increased available As did not significantly affect As uptake by B. juncea due to the decrease in the relative ratio and effect of available As with increase in available P derived from biochar. Moreover, biochar application negatively affected soil chemical properties (pH, EC, DOC, available P, and available As) and As uptake by B. juncea. Therefore, correlation analysis and PLS-PM analysis are useful tools to interpret the interactions among influencing factors in the soil-plant system. An approach at the equivalent molecular level rather than concentration should be adopted in future studies.


Asunto(s)
Arsénico , Contaminantes del Suelo , Álcalis , Carbón Orgánico , Análisis de los Mínimos Cuadrados , Planta de la Mostaza , Suelo , Contaminantes del Suelo/análisis
13.
Materials (Basel) ; 14(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34361304

RESUMEN

Various types of organic and inorganic materials are widely examined and applied into the arsenic (As) contaminated soil to stabilize As bioavailability and to enhance soil quality as an amendment. This study deals with two types of amendments: biochar for organic amendment and acid mine drainage sludge (AMDS) for inorganic amendment. Each amendment was applied in two types of As contaminated soils: one showed low contaminated concentration and acid property and the other showed high contaminated concentration and alkali property. In order to comprehensively evaluate the effect of amendments on As contaminated soil, chemical (As bioavailability), biological phytotoxicity (Lactuca sativa), soil respiration activity, dehydrogenase activity, urease activity, ß-glucosidase activity, and acid/alkali phosphomonoesterase activity, an ecological (total bacterial cells and total metagenomics DNA at the phylum level) assessment was conducted. Both amendments increased soil pH and dissolved organic carbon (DOC), which changes the bioavailability of As. In reducing phytotoxicity to As, the AMDS was the most effective regardless of soil types. Although soil enzyme activity results were not consistent with amendments types and soil types, bacterial diversity was increased after amendment application in acid soil. In acid soil, the results of principal component analysis represented that AMDS contributes to improve soil quality through the reduction in As bioavailability and the correction of soil pH from acidic to neutral condition, despite the increases in DOC. However, soil DOC had a negative effect on As bioavailability, phytotoxicity and some enzyme activity in alkali soil. Taken together, it is necessary to comprehensively evaluate the interaction of chemical, biological, and ecological properties according to soil pH in the decision-making stages for the selection of appropriate soil restoration material.

14.
Phytopathology ; 100(8): 774-83, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20626281

RESUMEN

We investigated the effects of water extracts of composts (CWE) from commercial compost facilities for controlling root and foliar infection of pepper plants by Phytophthora capsici. Among 47 CWE tested, CWE from composts Iljuk-3, Iljuk-7, Shinong-8, and Shinong-9 significantly (P < 0.05) inhibited zoospore germination, germ tube elongation, mycelial growth, and population of P. capsici. All selected CWE significantly (P < 0.05) reduced the disease incidence and severity in the seedling and plant assays compared with the controls. However, there were no significant differences in zoospore germination, disease incidence, and disease severity between treatments of untreated, autoclaved, and filtered CWE. In addition, CWE significantly (P < 0.05) suppressed leaf infection of P. capsici through induced systemic resistance (ISR) in plants root-drenched with CWE. The tested CWE enhanced the expression of the pathogenesis-related genes, CABPR1, CABGLU, CAChi2, CaPR-4, CAPO1, or CaPR-10 as well as beta-1,3-glucanase, chitinase, and peroxidase activities, which resulted in enhanced plant defense against P. capsici in pepper plants. Moreover, the CWE enhanced the chemical and structural defenses of the plants, including H(2)O(2) generation in the leaves and lignin accumulation in the stems. The CWE could also suppress other fungal pathogens (Colletotrichum coccodes in pepper leaves and C. orbiculare in cucumber leaves) through ISR; however, it failed to inhibit other bacterial pathogens (Xanthomonas campestris pv. vesicatoria in pepper leaves and Pseudomonas syringae pv. lachrymans in cucumber leaves). These results suggest that a heat-stable chemical(s) in the CWE can suppress root and foliar infection by P. capsici in pepper plants. In addition, these suppressions might result from direct inhibition of development and population of P. capsici for root infection, as well as indirect inhibition of foliar infection through ISR with broad-spectrum protection.


Asunto(s)
Capsicum/microbiología , Phytophthora , Enfermedades de las Plantas , Suelo , Capsicum/inmunología , Capsicum/metabolismo , Colletotrichum , Lignina/metabolismo , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Tallos de la Planta/metabolismo , Pseudomonas syringae , Xanthomonas campestris
15.
Artículo en Inglés | MEDLINE | ID: mdl-32887283

RESUMEN

Ammonia (NH3) is an important precursor for particulate secondary aerosol formation. This study was conducted to evaluate the applicability of a passive sampler (PAS) for estimating the NH3 emission from chemical fertilizer application (85 kg-N·ha-1) at field scale and to compare the results with a chamber system for the calculation of NH3 emission flux at lab scale. The application of chemical fertilizer increased the ambient NH3 concentration from 7.11 to 16.87 µg·m-3. Also, the ambient NH3 concentration measured by the PAS was found to be highly influenced by not only the chemical fertilizer application but also the weather (temperature and rainfall). Wind rose diagram data can be useful for understanding the distribution of ambient NH3 concentration. In the case of a chamber with few environmental variables, NH3 was emitted very quickly in the early stages and gradually decreased, whereas it was delayed at intervals of about one week at the site. It was found that daily temperature range, atmospheric disturbance by wind and rainfall, changes in soil moisture, and the presence of a flooded water table were the main influencing factors. The PAS data and the chamber system data were observed to have significant differences in spatial-temporal scale. In order to reduce the gap, it seems to be necessary to further develop a chamber system, in order to improve the precision of field analysis and to strengthen the connection between experimental results.


Asunto(s)
Contaminantes Atmosféricos , Fertilizantes , Agricultura , Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Fertilizantes/análisis , Nitrógeno/análisis , Suelo , Volatilización
16.
Environ Pollut ; 249: 1081-1090, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31146314

RESUMEN

In the present study, a screening level site-specific ecological risk assessment (ERA) was conducted on 10 abandoned metal mines in Korea to determine the ecological risk and prioritize the mines requiring further investigation. A cost-saving approach was adopted by combining both the chemical (ChemLoE) and the ecotoxicological (EcotoxLoE) lines of evidence for the evaluation of integrated risk (IR), rather than applying the full spectrum of Triad, including ecological LoE. The risk values for ChemLoE were derived by calculating the toxic pressure based on the total and 0.01 M CaCl2 extractable metal(loid) concentrations. The risk values for EcotoxLoE were based on the mortality and reproduction of the collembolan species Paronychiurus kimi in the mine soils. A response surface model with a central composite design (CCD) was constructed to standardize the effects of soil physicochemical properties (i.e., organic matter content, clay content, and soil pH) on the reproduction of P. kimi. The predicted number of offspring was used as a reference for the calculation of risk value for reproduction. The ChemLoE and EcotoxLoE values ranged from 0.34 to 1.00 and 0.12 to 0.49, respectively, in the surveyed mines. The contribution of the ChemLoE value to the IR was higher than that of the EcotoxLoE value for all mines. Overall, two of the 10 mines were classified as high-risk soils with high IR values (IR > 0.76), but large deviations were also observed between the LoEs in these mines, suggesting the need for further studies to confirm the potential risks. The future investigations of these mines should focus particularly on providing additional evidence to reduce the degree of uncertainty for risk assessment.


Asunto(s)
Artrópodos/efectos de los fármacos , Monitoreo del Ambiente/métodos , Metales/análisis , Minería , Contaminantes del Suelo/análisis , Suelo/química , Animales , Ecotoxicología , Metales/toxicidad , Reproducción/efectos de los fármacos , República de Corea , Medición de Riesgo , Contaminantes del Suelo/toxicidad
17.
Bioresour Technol ; 99(7): 2578-87, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17572087

RESUMEN

To examine the effects of amendments on the degradation of heavy mineral oil, we conducted a pilot-scale experiment in the field for 105 days. During the experiment, soil samples were collected and analyzed periodically to determine the amount of residual hydrocarbons and evaluate the effects of the amendments on microbial activity. After 105 days, the initial level of contamination (7490+/-480 mg hydrocarbon kg(-1) soil) was reduced by 18-40% in amended soils, whereas it was only reduced by 9% in nonamended soil. Heavy mineral oil degradation was much faster and more complete in compost-amended soil than in hay-, sawdust-, and mineral nutrient-amended soils. The enhanced degradation of heavy mineral oil in compost-amended soil may be a result of the significantly higher microbial activity in this soil. Among the studied microbial parameters, soil dehydrogenase, lipase, and urease activities were strongly and negatively correlated with heavy mineral oil biodegradation (P<0.01) in compost-amended soil.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Aceite Mineral/metabolismo , Microbiología del Suelo , Hidrocarburos/metabolismo , Proyectos Piloto
18.
Chemosphere ; 71(9): 1646-53, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18321559

RESUMEN

The hydraulic properties, such as hydraulic conductivity and water retention, of aged diesel-contaminated and bioremediated soils were examined and implications of the hydraulic properties for assessing bioremediation performance of soils were proposed. Bioremediation of diesel-contaminated soil was performed over 80 d using three treatments; (I) no nutrient added, column-packed soil, (II) nutrient added, column-packed soil, and (III) nutrient added, loosen soil. Diesel reduction in treatment I soil (control soil) was negligible while treatment III showed the greatest extent of diesel biodegradation. All treatments showed greatest rates of diesel biodegradation during the first 20 d, followed by a much retarded biodegradation rate in the remaining incubation period. Reduction of the degradation rate due to entrained diesel within inaccessible soil pores was hypothesized and tested by measuring the hydraulic properties of two column-packed soils (treatments I and II). The hydraulic conductivity of treatment II soil (nutrient added) was consistently above that of treatment I soil (no nutrient added) at pressure heads between 0 and 15 cm. In addition, the water retention of treatment II soil was greater at pressure heads <100 cm (equivalent to pore size of >30 microm), suggesting that biodegradative removal of hydrocarbons results in enhanced wettability of larger soil pores. However, water retention was not significantly different for control and biodegraded soils at pressure heads >100 cm, where smaller size soil pores were responsible for the water retention, indicating that diesel remained in smaller soil pores (e.g., <30 microm). Both incubation kinetics and hydraulic measurements suggest that hydrocarbons located in small pores with limited microbe accessibility may be recalcitrant to bioremediation.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Gasolina , Contaminantes del Suelo
19.
J Hazard Mater ; 153(1-2): 892-8, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17959304

RESUMEN

Phytoremediation is an emerging technology for the remediation of organic soil pollutants such as phenanthrene and pyrene (polycyclic aromatic hydrocarbons, PAHs). The PAH degradation ability of four native Korean plant species (Panicum bisulcatum, Echinogalus crus-galli, Astragalus membranaceus, and Aeschynomene indica) was compared in the greenhouse. During the 80-day experiment, soil samples were collected and analyzed periodically to determine the residual PAH content and microbial activity. More PAHs were dissipated in planted soil (i.e., with a rhizosphere) than in unplanted soil, and there were more obvious effects of plants on pyrene dissipation than on phenanthrene dissipation. After 80 days, >99 and 77-94% of phenanthrene and pyrene, respectively, had been degraded in planted soil, whereas 99% and 69% had been degraded in unplanted soil. This enhanced dissipation of PAHs in planted soils might be derived from increased microbial activity and plant-released enzymes. During the experimental period, a relatively large amount of phenolic compounds, high microbial activity, and high peroxidase activity were detected in planted soils.


Asunto(s)
Echinochloa/metabolismo , Fabaceae/metabolismo , Fenantrenos/metabolismo , Pirenos/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Recuento de Colonia Microbiana , Echinochloa/crecimiento & desarrollo , Echinochloa/microbiología , Fabaceae/crecimiento & desarrollo , Fabaceae/microbiología , Oxidorreductasas/metabolismo , Panicum/crecimiento & desarrollo , Panicum/metabolismo , Panicum/microbiología , Peroxidasa/metabolismo , Fenoles/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Microbiología del Suelo
20.
J Hazard Mater ; 143(1-2): 65-72, 2007 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-17030092

RESUMEN

We investigated the limits and extent of lubricants biodegradation at different nutrient conditions and evaluated several soil biological activities with regard to their usefulness for monitoring the bioremediation process in a soil contaminated with lubricants. To examine the effects of nutrient addition on lubricants biodegradation, a bench-scale investigation was conducted under different nutrient conditions for over 105 days testing period. When nutrients were added to contaminated soil with aged lubricant, great stimulation was occurred in fertilized soil for hydrocarbon degradation activity compared to non-fertilized soil. At the end of the experiment (105 days after), the initial level of contamination (9320+/-343 mg/kg) was reduced by 42-51% in the fertilized soil, whereas, only 18% of the hydrocarbon was eliminated in the non-fertilized soil. The effect of biostimulation of indigenous soil microorganisms declined with time, apparently 42% of the initial concentration of hydrocarbon remained at the end of experiment. Lubricants biodegradation process could be monitored well by soil biological parameters. In fertilized soil, biological parameters (number of HUB, soil respiration, dehydrogenase and catalase activities) were significantly enhanced and correlated with each other, as well as the residual lubricant concentration.


Asunto(s)
Biodegradación Ambiental , Hidrocarburos/metabolismo , Residuos Industriales , Contaminantes del Suelo/metabolismo , Lubrificación , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA