Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Small ; 18(39): e2203193, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35971192

RESUMEN

Porous structures have been utilized in tactile sensors to improve sensitivity owing to their excellent deformability. Recently, tactile sensors using porous structures have been used in practical applications, such as bio-signal monitoring. However, highly sensitive responses are limited to the low-pressure range, and their sensitivity significantly decreases in a higher-pressure range. Several approaches for developing tactile sensors with high sensitivity overing a wide pressure range have been proposed; however, achieving high sensitivity and wide sensing range remains a crucial challenge. This report presents a carbon nanotube (CNT)-coated CNT-polydimethylsiloxane (PDMS) composite having dual-scale pores for tactile sensors with high sensitivity over a wide pressure range. The porous polymer frame formed with dense pores of dual sizes facilitates the closure of large and small pores at low and high pressures, respectively. This results in an apparent increase in the number of contact points between the CNT-CNT at the pores even under a wide pressure range. Furthermore, the piezoresistivity of the CNT-PDMS composite contributes to achieving a high sensitivity of the tactile sensor over a wide pressure range. Based on these mechanisms, various human movements over a broad pressure spectrum are monitored to investigate the practical usefulness of the sensor.


Asunto(s)
Nanotubos de Carbono , Dimetilpolisiloxanos , Humanos , Nanotubos de Carbono/química , Porosidad , Tacto
2.
Small ; 17(50): e2105334, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34786842

RESUMEN

Flexible tactile sensors with high sensitivity have received considerable attention for their use in wearable electronics, human-machine interfaces, and health-monitoring devices. Although various micro/nanostructured materials are introduced for high-performance tactile sensors, simultaneously obtaining high sensitivity and a wide sensing range remains challenging. Here, a resistive tactile sensor is presented based on the hierarchical topography of carbon nanotubes (CNTs) prepared by a low-cost and straightforward manufacturing process. The 3D hierarchical structure of the CNTs over large areas is formed by transferring vertically aligned CNT bundles to a prestrained elastomer substrate and subsequently densifying them through capillary forming, providing a monotonic increase in the contact area as applied pressure. The deformable and hierarchical structure of CNTs allows the sensor to exhibit a wide sensing range (0-100 kPa), high sensitivity (141.72 kPa-1 ), and low detection limit (10 Pa). Additionally, the capillary-formed CNT structure results in increased durability of the sensor over repeated pressures. Based on these advantages, meaningful applications of tactile sensors, such as object recognition gloves and multidirectional force perceptions, are successfully realized. Given the scalable fabrication method, 3D hierarchically structured CNTs provide an essential step toward next-generation wearable devices.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Elastómeros , Humanos , Tacto
3.
Nanotechnology ; 32(35)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34038882

RESUMEN

While there have been remarkable improvements in the fabrication of suspended nanowires, placing a single nanowire at the desired location remains to be a challenging task. In this study, a simple method is proposed to fabricate suspended nanowires at desired locations using an electrospinning process and a designed microstructure. Using electrospun polymer fibers on the designed microstructure as a sacrificial template, various materials are deposited on it, and the electrospun fibers are selectively removed, leaving only nanowires of the deposited material. After the polymer fibers are removed, the remaining metal fibers agglomerate into a single nanowire. Throughout this process, including the removal of the polymer fibers, the samples are not exposed to high temperatures or chemicals, thereby allowing the formation of nanowires without oxidation or contamination. The diameter of the nanowire can be controlled in the electrospinning process, and a suspended Pd nanowire with a minimum diameter of 100 nm is fabricated. Additionally, a suspended single Pd nanowire-based H2gas sensor fabricated using the proposed process exhibits a highly sensitive response to H2gas.

4.
Small ; 15(12): e1805120, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30748123

RESUMEN

Although there have been remarkable improvements in stretchable strain sensors, the development of strain sensors with scalable fabrication techniques and which both high sensitivity and stretchability simultaneously is still challenging. In this work, a stretchable strain sensor based on overlapped carbon nanotube (CNT) bundles coupled with a silicone elastomer is presented. The strain sensor with overlapped CNTs is prepared by synthesizing line-patterned vertically aligned CNT bundles and rolling and transferring them to the silicone elastomer. With the sliding and disconnection of the overlapped CNTs, the strain sensor performs excellently with a broad sensing range (≥145% strain), ultrahigh sensitivity (gauge factor of 42 300 at a strain of 125-145%), high repeatability, and durability. The performance of the sensor is also tunable by controlling the overlapped area of CNT bundles. Detailed mechanisms of the sensor and its applications in human motion detection are also further investigated. With the novel structure and mechanism, the sensor can detect a wide range of strains with high sensitivity, demonstrating the potential for numerous applications including wearable healthcare devices.


Asunto(s)
Nanotubos de Carbono/química , Estrés Mecánico , Humanos , Movimiento (Física) , Dispositivos Electrónicos Vestibles
5.
Nanotechnology ; 30(21): 215501, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-30721895

RESUMEN

The functionalization of graphene with organic molecules is beneficial for the realization of high-performance graphene sensors because functionalization can provide enhanced functionalities beyond the properties of pristine graphene. Although various types of sensors based on organic-graphene hybrids have been developed, the functionalization processes have poor thickness-controllability/reliability or require post-processing, and sensor applications rely on conventional, rigid substrates such as SiO2/Si. Here, a flexible and transparent metalloporphyrin (MPP)-graphene hybrid for sensitive UV detection and chemical sensing is demonstrated. MPP, which provides strong light absorption, redox chemistry, and catalytic activity, is simply deposited onto graphene via one-step evaporation. Optical and electronic characterizations confirm that the graphene is successfully functionalized by MPP while maintaining its outstanding electronic properties. The MPP-functionalization greatly improves the photo- and chemical-sensing performances of the graphene, resulting in over 200% enhanced sensitivities for both UV light (365 nm) and toluene. Simultaneously, the MPP-graphene sensor exhibits no considerable change in electrical resistance under bending conditions, and remarkable optical transmittance in the visible range. On the basis of the excellent performances of the MPP-graphene hybrid, including high sensitivities, flexibility, transparency, and the ease and cost-effectiveness of the MPP-functionalization, it will be a promising candidate for flexible and transparent sensor applications.

6.
Nanotechnology ; 30(35): 355504, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31100747

RESUMEN

Two-dimensional (2D) nanomaterials have been extensively explored as promising candidates for gas sensing due to their high surface-to-volume ratio. Among many 2D nanomaterials, molybdenum disulfide (MoS2) is known to be functional in detecting harmful gases at room temperature; therefore, it has been actively studied as a gas sensing material. However, there has been a limitation in recovering the original signal from reacted MoS2 after exposure to the target gas. This work demonstrates the recovery of the initial resistance of reacted chemical vapor deposition-grown MoS2 by illuminating it with a UV light-emitting diode (LED). A novel mechanism involving photo-generated electron-hole pairs in MoS2 is proposed and experimentally verified. The fabricated sensor detects nitrogen dioxide (NO2) and distinguishes between concentrations from 1 to 10 ppm with the proposed recovery process. Reversible detection after repeated exposure to 5 ppm NO2 over eight cycles is achieved through UV-LED illumination for a short time during the recovery process, while the identical sensor without UV illumination shows a transitional response at each cycle. To apply a low cost gas sensing solution at room temperature, visible light LEDs are also used to recover the resistance of the reacted MoS2.

7.
Nanotechnology ; 30(27): 275401, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-30836339

RESUMEN

We present a triboelectric energy harvester fabricated with a simple electrospinning process of polyvinylidene fluoride/polyurethane polymers on conductive fabric. This electrospinning process provides higher electrical power output and hydrophobicity driven humidity resistance compared to flat polymer energy harvesters. By using conductive fabric as collector and electrode, the device could retain air permeability and flexibility. The triboelectric energy harvester exhibits a high open-circuit voltage of 45.1 V (at a compressive contact force of 20 N and relative humidity (RH) of 20%), humidity resistance (maintains about 40% of the open-circuit voltage at RH of 80%) and air permeability without deteriorating the air permeability of the fabric. Its durability was tested and shows no significant degradation of electrical output throughout 324,000 cycles of operation. This work suggests an approach for human energy harvesting in textile form with electrospun nanofibers as the contact surfaces of a triboelectric energy harvester.

8.
Nanotechnology ; 29(5): 055501, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29219849

RESUMEN

We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.

9.
Small ; 13(27)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28544754

RESUMEN

Low-dimensional carbon materials, such as semiconducting carbon nanotubes (CNTs), conducting graphene, and their hybrids, are of great interest as promising candidates for flexible, foldable, and transparent electronics. However, the development of highly photoresponsive, flexible, and transparent optoelectronics still remains limited due to their low absorbance and fast recombination rate of photoexcited charges, despite the considerable potential of photodetectors for future wearable and foldable devices. This work demonstrates a heterogeneous, all-carbon photodetector composed of graphene electrodes and porphyrin-interfaced single-walled CNTs (SWNTs) channel, exhibiting high photoresponse, flexibility, and full transparency across the device. The porphyrin molecules generate and transfer photoexcited holes to the SWNTs even under weak white light, resulting in significant improvement of photoresponsivity from negligible to 1.6 × 10-2 A W-1 . Simultaneously, the photodetector exhibits high flexibility allowing stable light detection under ≈50% strain (i.e., a bending radius of ≈350 µm), and retaining a sufficient transparency of ≈80% at 550 nm. Experimental demonstrations as a wearable sunlight sensor highlight the utility of the photodetector that can be conformally mounted on human skin and other curved surfaces without any mechanical and optical constraints. The heterogeneous integration of porphyrin-SWNT-graphene may provide a viable route to produce invisible, high-performance optoelectronic systems.

10.
Nanotechnology ; 27(20): 205502, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27071515

RESUMEN

A novel carbon nanotube (CNT)-based flexible strain sensor with the highest gauge factor of 4739 is presented. CNT-to-CNT contacts are fabricated on a pair of silicon electrodes fixed on a PDMS specimen for both flexibility and electrical connection. The strain is detected by the resistance change between facing CNT bundles. The proposed approach could be applied for diverse applications with a high gauge factor.

11.
Nat Commun ; 15(1): 2000, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448437

RESUMEN

Bioresorbable neural implants based on emerging classes of biodegradable materials offer a promising solution to the challenges of secondary surgeries for removal of implanted devices required for existing neural implants. In this study, we introduce a fully bioresorbable flexible hybrid opto-electronic system for simultaneous electrophysiological recording and optogenetic stimulation. The flexible and soft device, composed of biodegradable materials, has a direct optical and electrical interface with the curved cerebral cortex surface while exhibiting excellent biocompatibility. Optimized to minimize light transmission losses and photoelectric artifact interference, the device was chronically implanted in the brain of transgenic mice and performed to photo-stimulate the somatosensory area while recording local field potentials. Thus, the presented hybrid neural implant system, comprising biodegradable materials, promises to provide monitoring and therapy modalities for versatile applications in biomedicine.


Asunto(s)
Implantes Absorbibles , Depresores del Sistema Nervioso Central , Animales , Ratones , Optogenética , Artefactos , Encéfalo , Electrónica , Ratones Transgénicos
12.
Analyst ; 138(8): 2432-7, 2013 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-23463170

RESUMEN

We propose a gas sensor operable over a wide temperature range and using suspended GaN nanowires functionalized with Pt-Pd. The sensor is batch-fabricated by directly integrating the GaN nanowires onto batch-processed silicon microelectrodes in parallel. The high thermal stability of the sensor originates from a large band gap of GaN nanowires that enables the detection of NO2 gas at an elevated temperature of up to 350 °C without a decrease in responsiveness. Exposed to NO2 at 100-1000 ppm at 350 °C, the sensor shows a linear increment in relative response with respect to the change in gas concentration. The sensor results in a two- to four-fold increase in responsiveness to NO2 at 100 ppm compared to NH3 at 100 ppm and CO2 at 1000 ppm. The nanowires suspended over a substrate provide increased surface area that could interact with gas molecules for enhanced responsiveness, and prevent any unnecessary interactions between the nanowires and the substrate.

13.
Microsyst Nanoeng ; 9: 76, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303830

RESUMEN

Microelectromechanical systems (MEMS) are of considerable interest due to their compact size and low power consumption when used in modern electronics. MEMS devices intrinsically incorporate three-dimensional (3D) microstructures for their intended operations; however, these microstructures are easily broken by mechanical shocks accompanying high-magnitude transient acceleration, inducing device malfunction. Although various structural designs and materials have been proposed to overcome this limit, developing a shock absorber for easy integration into existing MEMS structures that effectively dissipates impact energy remains challenging. Here, a vertically aligned 3D nanocomposite based on ceramic-reinforced carbon nanotube (CNT) arrays is presented for in-plane shock-absorbing and energy dissipation around MEMS devices. This geometrically aligned composite consists of regionally-selective integrated CNT arrays and a subsequent atomically thick alumina layer coating, which serve as structural and reinforcing materials, respectively. The nanocomposite is integrated with the microstructure through a batch-fabrication process and remarkably improves the in-plane shock reliability of a designed movable structure over a wide acceleration range (0-12,000g). In addition, the enhanced shock reliability through the nanocomposite was experimentally verified through comparison with various control devices.

14.
ACS Nano ; 17(14): 13310-13318, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37418328

RESUMEN

Nano/micro-electromechanical (NEM/MEM) contact switches have great potential as energy-efficient and high-temperature-operable computing units to surmount those limitations of transistors. However, despite recent advances, the high-temperature operation of the mechanical switch is not fully stable nor repetitive due to the melting and softening of the contact material in the mechanical switch. Herein, MEM switches with carbon nanotube (CNT) arrays capable of operating at high temperatures are presented. In addition to the excellent thermal stability of CNT arrays, the absence of a melting point of CNTs allows the proposed switches to operate successfully at up to 550 °C, surpassing the maximum operating temperatures of state-of-the-art mechanical switches. The switches with CNTs also show a highly reliable contact lifetime of over 1 million cycles, even at a high temperature of 550 °C. Moreover, symmetrical pairs of normally open and normally closed MEM switches, whose interfaces are initially in contact and separated, respectively, are introduced. Consequently, the complementary inverters and logic gates operating at high temperatures can be easily configured such as NOT, NOR, and NAND gates. These switches and logic gates reveal the possibility for developing low-power, high-performance integrated circuits for high-temperature operations.

15.
Sci Rep ; 13(1): 21029, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030682

RESUMEN

To prevent immediate mortality in patients with a tracheostomy tube, it is essential to ensure timely suctioning or replacement of the tube. Breathing sounds at the entrance of tracheostomy tubes were recorded with a microphone and analyzed using a spectrogram to detect airway problems. The sounds were classified into three categories based on the waveform of the spectrogram according to the obstacle status: normal breathing sounds (NS), vibrant breathing sounds (VS) caused by movable obstacles, and sharp breathing sounds (SS) caused by fixed obstacles. A total of 3950 breathing sounds from 23 patients were analyzed. Despite neither the patients nor the medical staff recognizing any airway problems, the number and percentage of NS, VS, and SS were 1449 (36.7%), 1313 (33.2%), and 1188 (30.1%), respectively. Artificial intelligence (AI) was utilized to automatically classify breathing sounds. MobileNet and Inception_v3 exhibited the highest sensitivity and specificity scores of 0.9441 and 0.9414, respectively. When classifying into three categories, ResNet_50 showed the highest accuracy of 0.9027, and AlexNet showed the highest accuracy of 0.9660 in abnormal sounds. Classifying breathing sounds into three categories is very useful in deciding whether to suction or change the tracheostomy tubes, and AI can accomplish this with high accuracy.


Asunto(s)
Ruidos Respiratorios , Traqueostomía , Humanos , Inteligencia Artificial , Respiración , Succión
16.
Bioact Mater ; 21: 576-594, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36204281

RESUMEN

Viral infections cause damage to various organ systems by inducing organ-specific symptoms or systemic multi-organ damage. Depending on the infection route and virus type, infectious diseases are classified as respiratory, nervous, immune, digestive, or skin infections. Since these infectious diseases can widely spread in the community and their catastrophic effects are severe, identification of their causative agent and mechanisms underlying their pathogenesis is an urgent necessity. Although infection-associated mechanisms have been studied in two-dimensional (2D) cell culture models and animal models, they have shown limitations in organ-specific or human-associated pathogenesis, and the development of a human-organ-mimetic system is required. Recently, three-dimensional (3D) engineered tissue models, which can present human organ-like physiology in terms of the 3D structure, utilization of human-originated cells, recapitulation of physiological stimuli, and tight cell-cell interactions, were developed. Furthermore, recent studies have shown that these models can recapitulate infection-associated pathologies. In this review, we summarized the recent advances in 3D engineered tissue models that mimic organ-specific viral infections. First, we briefly described the limitations of the current 2D and animal models in recapitulating human-specific viral infection pathology. Next, we provided an overview of recently reported viral infection models, focusing particularly on organ-specific infection pathologies. Finally, a future perspective that must be pursued to reconstitute more human-specific infectious diseases is presented.

17.
Microsyst Nanoeng ; 9: 15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817329

RESUMEN

The air suspension and location specification properties of nanowires are crucial factors for optimizing nanowires in electronic devices and suppressing undesirable interactions with substrates. Although various strategies have been proposed to fabricate suspended nanowires, placing a nanowire in desired microstructures without material constraints or high-temperature processes remains a challenge. In this study, suspended nanowires were formed using a thermally aggregated electrospun polymer as a template. An elaborately designed microstructure enables an electrospun fiber template to be formed at the desired location during thermal treatment. Moreover, the desired thickness of the nanowires is easily controlled with the electrospun fiber templates, resulting in the parallel formation of suspended nanowires that are less than 100 nm thick. Furthermore, this approach facilitates the formation of suspended nanowires with various materials. This is accomplished by evaporating various materials onto the electrospun fiber template and by removing the template. Palladium, copper, tungsten oxide (WO3), and tin oxide nanowires are formed as examples to demonstrate the advantage of this approach in terms of nanowire material selection. Hydrogen (H2) and nitrogen dioxide (NO2) gas sensors comprising palladium and tungsten oxide, respectively, are demonstrated as exemplary devices of the proposed method.

18.
Adv Mater ; 35(35): e2302996, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37377148

RESUMEN

An in vitro model, composed of the short-wavelength human opsins and rhodopsins, is created. Two types of photosensitive neural spheroids are transfected for selective reaction under bluish-purple and green lights. These are employed to two devices with intact neuron and neural-spheroid to study the interaction. By photostimulation, the photosensitive spheroid initiated photoactivation, and the signal generated from its body is transmitted to adjacent neural networks. Specifically, the signal traveled through the axon bundle in narrow gap from photosensitive spheroid to intact spheroid as an eye-to-brain model including optic nerve. The whole process with photosensitive spheroid is monitored by calcium ion detecting fluorescence images. The results of this study can be applied to examine vision restoration and novel photosensitive biological systems with spectral sensitivity.


Asunto(s)
Opsinas , Visión Ocular , Humanos , Opsinas/metabolismo , Neuronas/metabolismo , Esferoides Celulares/metabolismo
19.
IEEE Trans Nanobioscience ; 21(3): 395-404, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34941516

RESUMEN

An increasing number of patients are suffering from central nervous system (CNS) injury, including spinal cord injury. However, no suitable treatment is available for such patients as yet. Various platforms have been utilized to recapitulate CNS injuries. However, animal models and in vitro two-dimensional (2D)-based cell culture platforms have limitations, such as genetic heterogeneity and loss of the neural-circuit ultrastructure. To overcome these limitations, we developed a method for performing axotomy on an open-access three-dimensional (3D) neuron-culture platform. In this platform, the 3D alignment of axons in the brain tissue was recapitulated. For direct access to the cultured axons, the bottom of the 3D neuron-culture device was disassembled, enabling exposure of the neuron-laden Matrigel to the outside. The mechanical damage to the axons was recapitulated by puncturing the neuron-laden Matrigel using a pin. Thus, precise axotomy of three-dimensionally aligned axons could be performed. Furthermore, it was possible to fill the punctuated area by re-injecting Matrigel. Consequently, neurites regenerated into re-injected Matrigel. Moreover, it was confirmed that astrocytes can be co-cultured on this open-access platform without interfering with the axon alignment. The proposed open-access platform is expected to be useful for developing treatment techniques for CNS injuries.


Asunto(s)
Axones , Microfluídica , Animales , Axones/fisiología , Axotomía , Técnicas de Cocultivo , Neuronas/fisiología
20.
RSC Adv ; 11(29): 18061-18067, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35480166

RESUMEN

Porous polydimethylsiloxane (PDMS) has garnered interest owing to its large inner surface area, high deformability, and lightweight, while possessing inherent properties, such as transparency, flexibility, cost-effectiveness, ease of fabrication, chemical/mechanical stability, and biocompatibility. For producing porous PDMS, gas foaming, sacrificial template, and emulsion template techniques have been used extensively. However, the aforementioned methods have difficulty in achieving submicron-sized inner pores, which is advantageous for improving flexibility and transparency. This study demonstrates a simple fabrication method for obtaining porous PDMS with fine pores partially down to the sub-micron scale. This is possible by the use of cheap, volatile, and easily accessible isopropyl alcohol (IPA) as a co-solvent in water and pre-PDMS emulsion. IPA shows an affinity towards both water and prepolymer, resulting in an increased distribution of small water particles inside PDMS before curing. These water particles evaporate while curing the prepolymer emulsion, thereby generating fine pores. The fine size and number density of pores are controlled by water and the added amount of IPA, resulting in adjustable mechanical, optical, and thermal properties of porous PDMS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA