Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Korean Med Sci ; 39(32): e228, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39164053

RESUMEN

BACKGROUND: We evaluated the radiologic, pulmonary functional, and antibody statuses of coronavirus disease 2019 (COVID-19) patients 6 and 18 months after discharge, comparing changes in status and focusing on risk factors for residual computed tomography (CT) abnormalities. METHODS: This prospective cohort study was conducted on COVID-19 patients discharged between April 2020 and January 2021. Chest CT, pulmonary function testing (PFT), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) measurements were performed 6 and 18 months after discharge. We evaluated factors associated with residual CT abnormalities and the correlation between lesion volume in CT (lesionvolume), PFT, and IgG levels. RESULTS: This study included 68 and 42 participants evaluated 6 and 18 months, respectively, after hospitalizations for COVID-19. CT abnormalities were noted in 22 participants (32.4%) at 6 months and 13 participants (31.0%) at 18 months. Lesionvolume was significantly lower at 18 months than 6 months (P < 0.001). Patients with CT abnormalities at 6 months showed lower forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC), and patients with CT abnormalities at 18 months exhibited lower FVC. FVC significantly improved between 6 and 18 months of follow-up (all P < 0.0001). SARS-CoV-2 IgG levels were significantly higher in patients with CT abnormalities at 6 and 18 months (P < 0.001). At 18-month follow-up assessments, age was associated with CT abnormalities (odds ratio, 1.17; 95% confidence interval, 1.03-1.32; P = 0.01), and lesionvolume showed a positive correlation with IgG level (r = 0.643, P < 0.001). CONCLUSION: At 18-month follow-up assessments, 31.0% of participants exhibited residual CT abnormalities. Age and higher SARS-CoV-2 IgG levels were significant predictors, and FVC was related to abnormal CT findings at 18 months. Lesionvolume and FVC improved between 6 and 18 months. TRIAL REGISTRATION: Clinical Research Information Service Identifier: KCT0008573.


Asunto(s)
COVID-19 , Inmunoglobulina G , Pulmón , Pruebas de Función Respiratoria , SARS-CoV-2 , Tomografía Computarizada por Rayos X , Humanos , COVID-19/diagnóstico por imagen , Masculino , Femenino , Estudios Prospectivos , Persona de Mediana Edad , Inmunoglobulina G/sangre , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Anciano , Estudios de Seguimiento , Pulmón/diagnóstico por imagen , Pulmón/patología , Anticuerpos Antivirales/sangre , Adulto , Volumen Espiratorio Forzado , Capacidad Vital , Factores de Riesgo
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542293

RESUMEN

Lactobacillus curvatus HY7602 fermented antler (FA) ameliorates sarcopenia and improves exercise performance by increasing muscle mass, muscle fiber regeneration, and mitochondrial biogenesis; however, its anti-fatigue and antioxidant effects have not been studied. Therefore, this study aimed to investigate the anti-fatigue and antioxidant effects and mechanisms of FA. C2C12 and HepG2 cells were stimulated with 1 mM of hydrogen peroxide (H2O2) to induce oxidative stress, followed by treatment with FA. Additionally, 44-week-old C57BL/6J mice were orally administered FA for 4 weeks. FA treatment (5-100 µg/mL) significantly attenuated H2O2-induced cytotoxicity and reactive oxygen species (ROS) production in both cell lines in a dose-dependent manner. In vivo experiments showed that FA treatment significantly increased the mobility time of mice in the forced swimming test and significantly downregulated the serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatine kinase (CK), and lactate. Notably, FA treatment significantly upregulated the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione ratio (GSH/GSSG) and increased the mRNA expression of antioxidant genes (SOD1, SOD2, CAT, GPx1, GPx2, and GSR) in the liver. Conclusively, FA is a potentially useful functional food ingredient for improving fatigue through its antioxidant effects.


Asunto(s)
Cuernos de Venado , Ciervos , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cuernos de Venado/metabolismo , Peróxido de Hidrógeno/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Fatiga/tratamiento farmacológico , Fatiga/metabolismo
3.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38203747

RESUMEN

Inflammatory bowel disease (IBD), a chronic condition that causes persistent inflammation in the digestive system, is closely associated with the intestinal microbiome. Here, we evaluated the effects of Lactiplantibacillus plantarum HY7718 (HY7718) on IBD symptoms in mice with dextran sulfate sodium (DSS)-induced colitis. Oral administration of HY7718 led to significant improvement in the disease activity index score and the histological index, as well as preventing weight loss, in model mice. HY7718 upregulated the expression of intestinal tight junction (TJ)-related genes and downregulated the expression of genes encoding pro-inflammatory cytokines and genes involved in the TLR/MyD88/NF-κB signaling pathway. Additionally, HY7718 reduced the blood levels of pro-inflammatory cytokines, as well as reversing DSS-induced changes to the composition of the intestinal microbiome. HY7718 also increased the percentage of beneficial bacteria (Lactiplantibacillus and Bifidobacterium), which correlated positively with the expression of intestinal TJ-related genes. Finally, HY7718 decreased the population of pathogens such as Escherichia, which correlated with IBD symptoms. The data suggest that HY7718 improves intestinal integrity in colitis model mice by regulating the expression of TJ proteins and inflammatory cytokines, as well as the composition of the intestinal microflora. Thus, L. plantarum HY7718 may be suitable as a functional supplement that improves IBD symptoms and gut health.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Lactobacillus plantarum , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Citocinas , Modelos Animales de Enfermedad
4.
Nutrients ; 16(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125449

RESUMEN

We aimed to characterize the anti-obesity and anti-atherosclerosis effects of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 using high-fat diet (HFD)-fed obese C57BL/6 mice. We divided the mice into control (CON), HFD, HFD with 108 CFU/kg/day probiotics (HFD + KL, HY7301:KY1032 = 1:1), and HFD with 109 CFU/kg/day probiotics (HFD + KH, HY7301:KY1032 = 1:1) groups and fed/treated them during 7 weeks. The body mass, brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and epididymal white adipose tissue (eWAT) masses and the total cholesterol and triglyceride concentrations were remarkably lower in probiotic-treated groups than in the HFD group in a dose-dependent manner. In addition, the expression of uncoupling protein 1 in the BAT, iWAT, and eWAT was significantly higher in probiotic-treated HFD mice than in the HFD mice, as demonstrated by immunofluorescence staining and Western blotting. We also measured the expression of cholesterol transport genes in the liver and jejunum and found that the expression of those encoding liver-X-receptor α, ATP-binding cassette transporters G5 and G8, and cholesterol 7α-hydroxylase were significantly higher in the HFD + KH mice than in the HFD mice. Thus, a Lactobacillus HY7601 and KY1032 mixture with 109 CFU/kg/day concentration can assist with body weight regulation through the management of lipid metabolism and thermogenesis.


Asunto(s)
Colesterol , Dieta Alta en Grasa , Metabolismo Energético , Lactobacillus , Ratones Endogámicos C57BL , Probióticos , Animales , Dieta Alta en Grasa/efectos adversos , Probióticos/farmacología , Probióticos/administración & dosificación , Colesterol/metabolismo , Colesterol/sangre , Metabolismo Energético/efectos de los fármacos , Masculino , Ratones , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Obesidad/metabolismo , Obesidad/microbiología , Tejido Adiposo Blanco/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo/metabolismo , Hígado/metabolismo , Lactobacillus plantarum , Yeyuno/metabolismo , Yeyuno/efectos de los fármacos , Yeyuno/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA