Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.682
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(5): 790-801, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38664585

RESUMEN

Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.


Asunto(s)
Hierro , Microambiente Tumoral , Animales , Hierro/metabolismo , Ratones , Microambiente Tumoral/inmunología , Humanos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/inmunología , Ratones Endogámicos C57BL , Lipocalina 2/metabolismo , Lipocalina 2/inmunología , Femenino , Simbiosis/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Activación de Macrófagos/inmunología , Ratones Noqueados
2.
Nat Immunol ; 24(8): 1308-1317, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37365384

RESUMEN

Virtual memory T (TVM) cells are a T cell subtype with a memory phenotype but no prior exposure to foreign antigen. Although TVM cells have antiviral and antibacterial functions, whether these cells can be pathogenic effectors of inflammatory disease is unclear. Here we identified a TVM cell-originated CD44super-high(s-hi)CD49dlo CD8+ T cell subset with features of tissue residency. These cells are transcriptionally, phenotypically and functionally distinct from conventional CD8+ TVM cells and can cause alopecia areata. Mechanistically, CD44s-hiCD49dlo CD8+ T cells could be induced from conventional TVM cells by interleukin (IL)-12, IL-15 and IL-18 stimulation. Pathogenic activity of CD44s-hiCD49dlo CD8+ T cells was mediated by NKG2D-dependent innate-like cytotoxicity, which was further augmented by IL-15 stimulation and triggered disease onset. Collectively, these data suggest an immunological mechanism through which TVM cells can cause chronic inflammatory disease by innate-like cytotoxicity.


Asunto(s)
Alopecia Areata , Linfocitos T CD8-positivos , Humanos , Interleucina-15 , Memoria Inmunológica , Subgrupos de Linfocitos T
3.
Cell ; 180(2): 248-262.e21, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978344

RESUMEN

The testis expresses the largest number of genes of any mammalian organ, a finding that has long puzzled molecular biologists. Our single-cell transcriptomic data of human and mouse spermatogenesis provide evidence that this widespread transcription maintains DNA sequence integrity in the male germline by correcting DNA damage through a mechanism we term transcriptional scanning. We find that genes expressed during spermatogenesis display lower mutation rates on the transcribed strand and have low diversity in the population. Moreover, this effect is fine-tuned by the level of gene expression during spermatogenesis. The unexpressed genes, which in our model do not benefit from transcriptional scanning, diverge faster over evolutionary timescales and are enriched for sensory and immune-defense functions. Collectively, we propose that transcriptional scanning shapes germline mutation signatures and modulates mutation rates in a gene-specific manner, maintaining DNA sequence integrity for the bulk of genes but allowing for faster evolution in a specific subset.


Asunto(s)
Expresión Génica/genética , Mutación de Línea Germinal/genética , Espermatogénesis/genética , Adulto , Animales , Secuencia de Bases/genética , Perfilación de la Expresión Génica/métodos , Células Germinativas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Tasa de Mutación , Testículo/metabolismo , Transcripción Genética/genética , Transcriptoma/genética
4.
Cell ; 176(6): 1461-1476.e23, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849374

RESUMEN

Maintaining the optimal performance of cell processes and organelles is the task of auto-regulatory systems. Here we describe an auto-regulatory device that helps to maintain homeostasis of the endoplasmic reticulum (ER) by adjusting the secretory flux to the cargo load. The cargo-recruiting subunit of the coatomer protein II (COPII) coat, Sec24, doubles as a sensor of folded cargo and, upon cargo binding, acts as a guanine nucleotide exchange factor to activate the signaling protein Gα12 at the ER exit sites (ERESs). This step, in turn, activates a complex signaling network that activates and coordinates the ER export machinery and attenuates proteins synthesis, thus preventing large fluctuations of folded and potentially active cargo that could be harmful to the cell or the organism. We call this mechanism AREX (autoregulation of ER export) and expect that its identification will aid our understanding of human physiology and diseases that develop from secretory dysfunction.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Línea Celular , Proteína Coatómero/metabolismo , Retículo Endoplásmico/fisiología , Estrés del Retículo Endoplásmico/fisiología , Femenino , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Células HeLa , Humanos , Masculino , Pliegue de Proteína , Transporte de Proteínas , Proteostasis/fisiología , Transducción de Señal
5.
Cell ; 176(4): 716-728.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30712871

RESUMEN

Sensory axons degenerate following separation from their cell body, but partial injury to peripheral nerves may leave the integrity of damaged axons preserved. We show that an endogenous ligand for the natural killer (NK) cell receptor NKG2D, Retinoic Acid Early 1 (RAE1), is re-expressed in adult dorsal root ganglion neurons following peripheral nerve injury, triggering selective degeneration of injured axons. Infiltration of cytotoxic NK cells into the sciatic nerve by extravasation occurs within 3 days following crush injury. Using a combination of genetic cell ablation and cytokine-antibody complex stimulation, we show that NK cell function correlates with loss of sensation due to degeneration of injured afferents and reduced incidence of post-injury hypersensitivity. This neuro-immune mechanism of selective NK cell-mediated degeneration of damaged but intact sensory axons complements Wallerian degeneration and suggests the therapeutic potential of modulating NK cell function to resolve painful neuropathy through the clearance of partially damaged nerves.


Asunto(s)
Células Asesinas Naturales/fisiología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Axones , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Regeneración Nerviosa , Neuronas/citología , Neuronas Aferentes/inmunología , Neuronas Aferentes/metabolismo , Proteínas Asociadas a Matriz Nuclear/fisiología , Proteínas de Transporte Nucleocitoplasmático/fisiología , Dolor , Traumatismos de los Nervios Periféricos/inmunología , Enfermedades del Sistema Nervioso Periférico , Nervio Ciático , Células Receptoras Sensoriales/metabolismo
6.
Nature ; 626(7998): 306-312, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326593

RESUMEN

Rechargeable Li-metal batteries have the potential to more than double the specific energy of the state-of-the-art rechargeable Li-ion batteries, making Li-metal batteries a prime candidate for next-generation high-energy battery technology1-3. However, current Li-metal batteries suffer from fast cycle degradation compared with their Li-ion battery counterparts2,3, preventing their practical adoption. A main contributor to capacity degradation is the disconnection of Li from the electrochemical circuit, forming isolated Li4-8. Calendar ageing studies have shown that resting in the charged state promotes further reaction of active Li with the surrounding electrolyte9-12. Here we discover that calendar ageing in the discharged state improves capacity retention through isolated Li recovery, which is in contrast with the well-known phenomenon of capacity degradation observed during the charged state calendar ageing. Inactive capacity recovery is verified through observation of Coulombic efficiency greater than 100% on both Li||Cu half-cells and anode-free cells using a hybrid continuous-resting cycling protocol and with titration gas chromatography. An operando optical setup further confirms excess isolated Li reactivation as the predominant contributor to the increased capacity recovery. These insights into a previously unknown pathway for capacity recovery through discharged state resting emphasize the marked impact of cycling strategies on Li-metal battery performance.

7.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418917

RESUMEN

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Asunto(s)
Empalme Alternativo , Evolución Molecular , Hominidae , Proteínas de Dominio T Box , Cola (estructura animal) , Animales , Humanos , Ratones , Empalme Alternativo/genética , Elementos Alu/genética , Modelos Animales de Enfermedad , Genoma/genética , Hominidae/anatomía & histología , Hominidae/genética , Intrones/genética , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Fenotipo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/embriología , Exones/genética
8.
Cell ; 159(6): 1341-51, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25467443

RESUMEN

Intraspecific genetic incompatibilities prevent the assembly of specific alleles into single genotypes and influence genome- and species-wide patterns of sequence variation. A common incompatibility in plants is hybrid necrosis, characterized by autoimmune responses due to epistatic interactions between natural genetic variants. By systematically testing thousands of F1 hybrids of Arabidopsis thaliana strains, we identified a small number of incompatibility hot spots in the genome, often in regions densely populated by nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes. In several cases, these immune receptor loci interact with each other, suggestive of conflict within the immune system. A particularly dangerous locus is a highly variable cluster of NLR genes, DM2, which causes multiple independent incompatibilities with genes that encode a range of biochemical functions, including NLRs. Our findings suggest that deleterious interactions of immune receptors limit the combinations of favorable disease resistance alleles accessible to plant genomes.


Asunto(s)
Arabidopsis/genética , Arabidopsis/inmunología , Epistasis Genética , Secuencia de Aminoácidos , Arabidopsis/clasificación , Cruzamientos Genéticos , Genoma de Planta , Hibridación Genética , Datos de Secuencia Molecular , Filogenia , Fenómenos Fisiológicos de las Plantas , Alineación de Secuencia
9.
Nature ; 623(7986): 423-431, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914927

RESUMEN

Genetically engineered mouse models (GEMMs) help us to understand human pathologies and develop new therapies, yet faithfully recapitulating human diseases in mice is challenging. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences, which control spatiotemporal gene expression patterns and splicing in many human diseases1,2. Including regulatory extensive genomic regions, which requires large-scale genome engineering, should enhance the quality of disease modelling. Existing methods set limits on the size and efficiency of DNA delivery, hampering the routine creation of highly informative models that we call genomically rewritten and tailored GEMMs (GREAT-GEMMs). Here we describe 'mammalian switching antibiotic resistance markers progressively for integration' (mSwAP-In), a method for efficient genome rewriting in mouse embryonic stem cells. We demonstrate the use of mSwAP-In for iterative genome rewriting of up to 115 kb of a tailored Trp53 locus, as well as for humanization of mice using 116 kb and 180 kb human ACE2 loci. The ACE2 model recapitulated human ACE2 expression patterns and splicing, and notably, presented milder symptoms when challenged with SARS-CoV-2 compared with the existing K18-hACE2 model, thus representing a more human-like model of infection. Finally, we demonstrated serial genome writing by humanizing mouse Tmprss2 biallelically in the ACE2 GREAT-GEMM, highlighting the versatility of mSwAP-In in genome writing.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Modelos Animales de Enfermedad , Ingeniería Genética , Genoma , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Alelos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/virología , ADN/genética , Farmacorresistencia Microbiana/genética , Ingeniería Genética/métodos , Genoma/genética , Células Madre Embrionarias de Ratones/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidasas/genética , Proteína p53 Supresora de Tumor/genética
10.
Nature ; 601(7892): 211-216, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35022590

RESUMEN

Implementations of artificial neural networks that borrow analogue techniques could potentially offer low-power alternatives to fully digital approaches1-3. One notable example is in-memory computing based on crossbar arrays of non-volatile memories4-7 that execute, in an analogue manner, multiply-accumulate operations prevalent in artificial neural networks. Various non-volatile memories-including resistive memory8-13, phase-change memory14,15 and flash memory16-19-have been used for such approaches. However, it remains challenging to develop a crossbar array of spin-transfer-torque magnetoresistive random-access memory (MRAM)20-22,  despite the technology's practical advantages such as endurance and large-scale commercialization5. The difficulty stems from the low resistance of MRAM, which would result in large power consumption in a conventional crossbar array that uses current summation for analogue multiply-accumulate operations. Here we report a 64 × 64 crossbar array based on MRAM cells that overcomes the low-resistance issue with an architecture that uses resistance summation for analogue multiply-accumulate operations. The array is integrated with readout electronics in 28-nanometre complementary metal-oxide-semiconductor technology. Using this array, a two-layer perceptron is implemented to classify 10,000 Modified National Institute of Standards and Technology digits with an accuracy of 93.23 per cent (software baseline: 95.24 per cent). In an emulation of a deeper, eight-layer Visual Geometry Group-8 neural network with measured errors, the classification accuracy improves to 98.86 per cent (software baseline: 99.28 per cent). We also use the array to implement a single layer in a ten-layer neural network to realize face detection with an accuracy of 93.4 per cent.

11.
Mol Cell ; 78(5): 903-914.e4, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32396821

RESUMEN

LSD1 (lysine specific demethylase; also known as KDM1A), the first histone demethylase discovered, regulates cell-fate determination and is overexpressed in multiple cancers. LSD1 demethylates histone H3 Lys4, an epigenetic mark for active genes, but requires the CoREST repressor to act on nucleosome substrates. To understand how an accessory subunit (CoREST) enables a chromatin enzyme (LSD1) to function on a nucleosome and not just histones, we have determined the crystal structure of the LSD1/CoREST complex bound to a 191-bp nucleosome. We find that the LSD1 catalytic domain binds extranucleosomal DNA and is unexpectedly positioned 100 Å away from the nucleosome core. CoREST makes critical contacts with both histone and DNA components of the nucleosome, explaining its essential function in demethylating nucleosome substrates. Our studies also show that the LSD1(K661A) frequently used as a catalytically inactive mutant in vivo (based on in vitro peptide studies) actually retains substantial H3K4 demethylase activity on nucleosome substrates.


Asunto(s)
Histona Demetilasas/metabolismo , Histona Demetilasas/ultraestructura , Secuencia de Aminoácidos , Dominio Catalítico , Cromatina/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Cristalografía por Rayos X/métodos , ADN/genética , ADN/metabolismo , Histona Demetilasas/genética , Histonas/metabolismo , Humanos , Metilación , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica
12.
N Engl J Med ; 390(2): 118-131, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38197815

RESUMEN

BACKGROUND: The early-generation ROS1 tyrosine kinase inhibitors (TKIs) that are approved for the treatment of ROS1 fusion-positive non-small-cell lung cancer (NSCLC) have antitumor activity, but resistance develops in tumors, and intracranial activity is suboptimal. Repotrectinib is a next-generation ROS1 TKI with preclinical activity against ROS1 fusion-positive cancers, including those with resistance mutations such as ROS1 G2032R. METHODS: In this registrational phase 1-2 trial, we assessed the efficacy and safety of repotrectinib in patients with advanced solid tumors, including ROS1 fusion-positive NSCLC. The primary efficacy end point in the phase 2 trial was confirmed objective response; efficacy analyses included patients from phase 1 and phase 2. Duration of response, progression-free survival, and safety were secondary end points in phase 2. RESULTS: On the basis of results from the phase 1 trial, the recommended phase 2 dose of repotrectinib was 160 mg daily for 14 days, followed by 160 mg twice daily. Response occurred in 56 of the 71 patients (79%; 95% confidence interval [CI], 68 to 88) with ROS1 fusion-positive NSCLC who had not previously received a ROS1 TKI; the median duration of response was 34.1 months (95% CI, 25.6 to could not be estimated), and median progression-free survival was 35.7 months (95% CI, 27.4 to could not be estimated). Response occurred in 21 of the 56 patients (38%; 95% CI, 25 to 52) with ROS1 fusion-positive NSCLC who had previously received one ROS1 TKI and had never received chemotherapy; the median duration of response was 14.8 months (95% CI, 7.6 to could not be estimated), and median progression-free survival was 9.0 months (95% CI, 6.8 to 19.6). Ten of the 17 patients (59%; 95% CI, 33 to 82) with the ROS1 G2032R mutation had a response. A total of 426 patients received the phase 2 dose; the most common treatment-related adverse events were dizziness (in 58% of the patients), dysgeusia (in 50%), and paresthesia (in 30%), and 3% discontinued repotrectinib owing to treatment-related adverse events. CONCLUSIONS: Repotrectinib had durable clinical activity in patients with ROS1 fusion-positive NSCLC, regardless of whether they had previously received a ROS1 TKI. Adverse events were mainly of low grade and compatible with long-term administration. (Funded by Turning Point Therapeutics, a wholly owned subsidiary of Bristol Myers Squibb; TRIDENT-1 ClinicalTrials.gov number, NCT03093116.).


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Tirosina Quinasas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Antineoplásicos/uso terapéutico , Resultado del Tratamiento
13.
N Engl J Med ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924756

RESUMEN

BACKGROUND: Amivantamab plus lazertinib (amivantamab-lazertinib) has shown clinically meaningful and durable antitumor activity in patients with previously untreated or osimertinib-pretreated EGFR (epidermal growth factor receptor)-mutated advanced non-small-cell lung cancer (NSCLC). METHODS: In a phase 3, international, randomized trial, we assigned, in a 2:2:1 ratio, patients with previously untreated EGFR-mutated (exon 19 deletion or L858R), locally advanced or metastatic NSCLC to receive amivantamab-lazertinib (in an open-label fashion), osimertinib (in a blinded fashion), or lazertinib (in a blinded fashion, to assess the contribution of treatment components). The primary end point was progression-free survival in the amivantamab-lazertinib group as compared with the osimertinib group, as assessed by blinded independent central review. RESULTS: Overall, 1074 patients underwent randomization (429 to amivantamab-lazertinib, 429 to osimertinib, and 216 to lazertinib). The median progression-free survival was significantly longer in the amivantamab-lazertinib group than in the osimertinib group (23.7 vs. 16.6 months; hazard ratio for disease progression or death, 0.70; 95% confidence interval [CI], 0.58 to 0.85; P<0.001). An objective response was observed in 86% of the patients (95% CI, 83 to 89) in the amivantamab-lazertinib group and in 85% of those (95% CI, 81 to 88) in the osimertinib group; among patients with a confirmed response (336 in the amivantamab-lazertinib group and 314 in the osimertinib group), the median response duration was 25.8 months (95% CI, 20.1 to could not be estimated) and 16.8 months (95% CI, 14.8 to 18.5), respectively. In a planned interim overall survival analysis of amivantamab-lazertinib as compared with osimertinib, the hazard ratio for death was 0.80 (95% CI, 0.61 to 1.05). Predominant adverse events were EGFR-related toxic effects. The incidence of discontinuation of all agents due to treatment-related adverse events was 10% with amivantamab-lazertinib and 3% with osimertinib. CONCLUSIONS: Amivantamab-lazertinib showed superior efficacy to osimertinib as first-line treatment in EGFR-mutated advanced NSCLC. (Funded by Janssen Research and Development; MARIPOSA ClinicalTrials.gov number, NCT04487080.).

14.
Nature ; 593(7860): 570-574, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953396

RESUMEN

A balanced intake of macronutrients-protein, carbohydrate and fat-is essential for the well-being of organisms. An adequate calorific intake but with insufficient protein consumption can lead to several ailments, including kwashiorkor1. Taste receptors (T1R1-T1R3)2 can detect amino acids in the environment, and cellular sensors (Gcn2 and Tor)3 monitor the levels of amino acids in the cell. When deprived of dietary protein, animals select a food source that contains a greater proportion of protein or essential amino acids (EAAs)4. This suggests that food selection is geared towards achieving the target amount of a particular macronutrient with assistance of the EAA-specific hunger-driven response, which is poorly understood. Here we show in Drosophila that a microbiome-gut-brain axis detects a deficit of EAAs and stimulates a compensatory appetite for EAAs. We found that the neuropeptide CNMamide (CNMa)5 was highly induced in enterocytes of the anterior midgut during protein deprivation. Silencing of the CNMa-CNMa receptor axis blocked the EAA-specific hunger-driven response in deprived flies. Furthermore, gnotobiotic flies bearing an EAA-producing symbiotic microbiome exhibited a reduced appetite for EAAs. By contrast, gnotobiotic flies with a mutant microbiome that did not produce leucine or other EAAs showed higher expression of CNMa and a greater compensatory appetite for EAAs. We propose that gut enterocytes sense the levels of diet- and microbiome-derived EAAs and communicate the EAA-deprived condition to the brain through CNMa.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Eje Cerebro-Intestino , Drosophila/fisiología , Preferencias Alimentarias , Microbioma Gastrointestinal , Aminoácidos Esenciales/deficiencia , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Modificados Genéticamente , Apetito , Enterocitos , Femenino , Vida Libre de Gérmenes , Hambre , Leucina , Simbiosis
15.
N Engl J Med ; 389(21): 1935-1948, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37937763

RESUMEN

BACKGROUND: Osimertinib is a third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that is selective for EGFR-TKI-sensitizing and EGFR T790M resistance mutations. Evidence suggests that the addition of chemotherapy may extend the benefits of EGFR-TKI therapy. METHODS: In this phase 3, international, open-label trial, we randomly assigned in a 1:1 ratio patients with EGFR-mutated (exon 19 deletion or L858R mutation) advanced non-small-cell lung cancer (NSCLC) who had not previously received treatment for advanced disease to receive osimertinib (80 mg once daily) with chemotherapy (pemetrexed [500 mg per square meter of body-surface area] plus either cisplatin [75 mg per square meter] or carboplatin [pharmacologically guided dose]) or to receive osimertinib monotherapy (80 mg once daily). The primary end point was investigator-assessed progression-free survival. Response and safety were also assessed. RESULTS: A total of 557 patients underwent randomization. Investigator-assessed progression-free survival was significantly longer in the osimertinib-chemotherapy group than in the osimertinib group (hazard ratio for disease progression or death, 0.62; 95% confidence interval [CI], 0.49 to 0.79; P<0.001). At 24 months, 57% (95% CI, 50 to 63) of the patients in the osimertinib-chemotherapy group and 41% (95% CI, 35 to 47) of those in the osimertinib group were alive and progression-free. Progression-free survival as assessed according to blinded independent central review was consistent with the primary analysis (hazard ratio, 0.62; 95% CI, 0.48 to 0.80). An objective (complete or partial) response was observed in 83% of the patients in the osimertinib-chemotherapy group and in 76% of those in the osimertinib group; the median response duration was 24.0 months (95% CI, 20.9 to 27.8) and 15.3 months (95% CI, 12.7 to 19.4), respectively. The incidence of grade 3 or higher adverse events from any cause was higher with the combination than with monotherapy - a finding driven by known chemotherapy-related adverse events. The safety profile of osimertinib plus pemetrexed and a platinum-based agent was consistent with the established profiles of the individual agents. CONCLUSIONS: First-line treatment with osimertinib-chemotherapy led to significantly longer progression-free survival than osimertinib monotherapy among patients with EGFR-mutated advanced NSCLC. (Funded by AstraZeneca; FLAURA2 ClinicalTrials.gov number, NCT04035486.).


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Humanos , Compuestos de Anilina/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Pemetrexed/efectos adversos , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/uso terapéutico
16.
N Engl J Med ; 389(22): 2039-2051, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37870976

RESUMEN

BACKGROUND: Amivantamab has been approved for the treatment of patients with advanced non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) exon 20 insertions who have had disease progression during or after platinum-based chemotherapy. Phase 1 data showed the safety and antitumor activity of amivantamab plus carboplatin-pemetrexed (chemotherapy). Additional data on this combination therapy are needed. METHODS: In this phase 3, international, randomized trial, we assigned in a 1:1 ratio patients with advanced NSCLC with EGFR exon 20 insertions who had not received previous systemic therapy to receive intravenous amivantamab plus chemotherapy (amivantamab-chemotherapy) or chemotherapy alone. The primary outcome was progression-free survival according to blinded independent central review. Patients in the chemotherapy group who had disease progression were allowed to cross over to receive amivantamab monotherapy. RESULTS: A total of 308 patients underwent randomization (153 to receive amivantamab-chemotherapy and 155 to receive chemotherapy alone). Progression-free survival was significantly longer in the amivantamab-chemotherapy group than in the chemotherapy group (median, 11.4 months and 6.7 months, respectively; hazard ratio for disease progression or death, 0.40; 95% confidence interval [CI], 0.30 to 0.53; P<0.001). At 18 months, progression-free survival was reported in 31% of the patients in the amivantamab-chemotherapy group and in 3% in the chemotherapy group; a complete or partial response at data cutoff was reported in 73% and 47%, respectively (rate ratio, 1.50; 95% CI, 1.32 to 1.68; P<0.001). In the interim overall survival analysis (33% maturity), the hazard ratio for death for amivantamab-chemotherapy as compared with chemotherapy was 0.67 (95% CI, 0.42 to 1.09; P = 0.11). The predominant adverse events associated with amivantamab-chemotherapy were reversible hematologic and EGFR-related toxic effects; 7% of patients discontinued amivantamab owing to adverse reactions. CONCLUSIONS: The use of amivantamab-chemotherapy resulted in superior efficacy as compared with chemotherapy alone as first-line treatment of patients with advanced NSCLC with EGFR exon 20 insertions. (Funded by Janssen Research and Development; PAPILLON ClinicalTrials.gov number, NCT04538664.).


Asunto(s)
Antineoplásicos Inmunológicos , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Progresión de la Enfermedad , Receptores ErbB/genética , Exones/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Carboplatino/administración & dosificación , Carboplatino/efectos adversos , Carboplatino/uso terapéutico , Pemetrexed/administración & dosificación , Pemetrexed/efectos adversos , Pemetrexed/uso terapéutico , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/efectos adversos
17.
N Engl J Med ; 388(18): 1668-1679, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-36876735

RESUMEN

BACKGROUND: Data regarding clinical outcomes after intravascular imaging-guided percutaneous coronary intervention (PCI) for complex coronary-artery lesions, as compared with outcomes after angiography-guided PCI, are limited. METHODS: In this prospective, multicenter, open-label trial in South Korea, we randomly assigned patients with complex coronary-artery lesions in a 2:1 ratio to undergo either intravascular imaging-guided PCI or angiography-guided PCI. In the intravascular imaging group, the choice between intravascular ultrasonography and optical coherence tomography was at the operators' discretion. The primary end point was a composite of death from cardiac causes, target-vessel-related myocardial infarction, or clinically driven target-vessel revascularization. Safety was also assessed. RESULTS: A total of 1639 patients underwent randomization, with 1092 assigned to undergo intravascular imaging-guided PCI and 547 assigned to undergo angiography-guided PCI. At a median follow-up of 2.1 years (interquartile range, 1.4 to 3.0), a primary end-point event had occurred in 76 patients (cumulative incidence, 7.7%) in the intravascular imaging group and in 60 patients (cumulative incidence, 12.3%) in the angiography group (hazard ratio, 0.64; 95% confidence interval, 0.45 to 0.89; P = 0.008). Death from cardiac causes occurred in 16 patients (cumulative incidence, 1.7%) in the intravascular imaging group and in 17 patients (cumulative incidence, 3.8%) in the angiography group; target-vessel-related myocardial infarction occurred in 38 (cumulative incidence, 3.7%) and 30 (cumulative incidence, 5.6%), respectively; and clinically driven target-vessel revascularization in 32 (cumulative incidence, 3.4%) and 25 (cumulative incidence, 5.5%), respectively. There were no apparent between-group differences in the incidence of procedure-related safety events. CONCLUSIONS: Among patients with complex coronary-artery lesions, intravascular imaging-guided PCI led to a lower risk of a composite of death from cardiac causes, target-vessel-related myocardial infarction, or clinically driven target-vessel revascularization than angiography-guided PCI. (Supported by Abbott Vascular and Boston Scientific; RENOVATE-COMPLEX-PCI ClinicalTrials.gov number, NCT03381872).


Asunto(s)
Enfermedad de la Arteria Coronaria , Stents Liberadores de Fármacos , Infarto del Miocardio , Intervención Coronaria Percutánea , Humanos , Angiografía Coronaria/efectos adversos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/etiología , Infarto del Miocardio/epidemiología , Infarto del Miocardio/etiología , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/métodos , Estudios Prospectivos , Resultado del Tratamiento , Ultrasonografía Intervencional/métodos
18.
Plant Cell ; 35(1): 510-528, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36342213

RESUMEN

In nucleotide metabolism, nucleoside kinases recycle nucleosides into nucleotides-a process called nucleoside salvage. Nucleoside kinases for adenosine, uridine, and cytidine have been characterized from many organisms, but kinases for inosine and guanosine salvage are not yet known in eukaryotes and only a few such enzymes have been described from bacteria. Here we identified Arabidopsis thaliana PLASTID NUCLEOSIDE KINASE 1 (PNK1), an enzyme highly conserved in plants and green algae belonging to the Phosphofructokinase B family. We demonstrate that PNK1 from A. thaliana is located in plastids and catalyzes the phosphorylation of inosine, 5-aminoimidazole-4-carboxamide-1-ß-d-ribose (AICA ribonucleoside), and uridine but not guanosine in vitro, and is involved in inosine salvage in vivo. PNK1 mutation leads to increased flux into purine nucleotide catabolism and, especially in the context of defective uridine degradation, to over-accumulation of uridine and UTP as well as growth depression. The data suggest that PNK1 is involved in feedback regulation of purine nucleotide biosynthesis and possibly also pyrimidine nucleotide biosynthesis. We additionally report that cold stress leads to accumulation of purine nucleotides, probably by inducing nucleotide biosynthesis, but that this adjustment of nucleotide homeostasis to environmental conditions is not controlled by PNK1.


Asunto(s)
Inosina , Nucleósidos , Inosina/metabolismo , Inosina/farmacología , Nucleósidos/metabolismo , Nucleótidos , Nucleótidos de Purina/genética , Nucleótidos de Purina/metabolismo , Uridina
19.
Immunity ; 47(6): 1182-1196.e10, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29262351

RESUMEN

CD4+ T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4+ T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1-/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1-/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/inmunología , Ácidos y Sales Biliares/inmunología , Linfocitos T CD4-Positivos/inmunología , Enfermedad de Crohn/inmunología , Ileítis/inmunología , Mucosa Intestinal/inmunología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/deficiencia , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Acridinas/farmacología , Adulto , Animales , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/farmacología , Transporte Biológico , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/patología , Enfermedad de Crohn/genética , Enfermedad de Crohn/patología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Homeostasis/inmunología , Humanos , Ileítis/genética , Ileítis/patología , Íleon/inmunología , Íleon/patología , Inmunidad Mucosa , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Estrés Oxidativo , Transducción de Señal , Tetrahidroisoquinolinas/farmacología
20.
Cell ; 145(1): 145-58, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21458673

RESUMEN

RNA interference is a powerful tool for studying gene function, however, the reproducible generation of RNAi transgenic mice remains a significant limitation. By combining optimized fluorescence-coupled miR30-based shRNAs with high efficiency ES cell targeting, we developed a fast, scalable pipeline for the production of shRNA transgenic mice. Using this system, we generated eight tet-regulated shRNA transgenic lines targeting Firefly and Renilla luciferases, Oct4 and tumor suppressors p53, p16(INK4a), p19(ARF) and APC and demonstrate potent gene silencing and GFP-tracked knockdown in a broad range of tissues in vivo. Further, using an shRNA targeting APC, we illustrate how this approach can identify predicted phenotypes and also unknown functions for a well-studied gene. In addition, through regulated gene silencing we validate APC/Wnt and p19(ARF) as potential therapeutic targets in T cell acute lymphoblastic leukemia/lymphoma and lung adenocarcinoma, respectively. This system provides a cost-effective and scalable platform for the production of RNAi transgenic mice targeting any mammalian gene. PAPERCLIP:


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Interferencia de ARN , Adenocarcinoma/genética , Adenocarcinoma/terapia , Animales , Células Madre Embrionarias/metabolismo , Técnicas de Silenciamiento del Gen/economía , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Ratones , Ratones Transgénicos , MicroARNs/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Procesamiento Postranscripcional del ARN , ARN Interferente Pequeño/genética , Transducción de Señal , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA