Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(2): 422-440.e17, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33450207

RESUMEN

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.


Asunto(s)
Basófilos/patología , Neuronas/patología , Prurito/patología , Enfermedad Aguda , Alérgenos/inmunología , Animales , Enfermedad Crónica , Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Histamina/metabolismo , Humanos , Inmunoglobulina E/inmunología , Inflamación/patología , Leucotrienos/metabolismo , Mastocitos/inmunología , Ratones Endogámicos C57BL , Fenotipo , Prurito/inmunología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo
2.
Nat Immunol ; 17(11): 1252-1262, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27595231

RESUMEN

The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/-) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/inmunología , Virosis/inmunología , Virosis/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Animales , Antivirales/farmacología , Modelos Animales de Enfermedad , Inmunidad Innata , Ratones , Ratones Noqueados , Péptidos/farmacología , Fosforilación , Unión Proteica , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , Virus ARN/efectos de los fármacos , Virus ARN/inmunología , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Ubiquitinación , Virosis/virología , Replicación Viral
3.
Nucleic Acids Res ; 51(20): 11178-11196, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37850636

RESUMEN

Von Hippel-Lindau (VHL) is a tumor suppressor that functions as the substrate recognition subunit of the CRL2VHL E3 complex. While substrates of VHL have been identified, its tumor suppressive role remains to be fully understood. For further determination of VHL substrates, we analyzed the physical interactome of VHL and identified the histone H3K9 methyltransferase SETBD1 as a novel target. SETDB1 undergoes oxygen-dependent hydroxylation by prolyl hydroxylase domain proteins and the CRL2VHL complex recognizes hydroxylated SETDB1 for ubiquitin-mediated degradation. Under hypoxic conditions, SETDB1 accumulates by escaping CRL2VHL activity. Loss of SETDB1 in hypoxia compared with that in normoxia escalates the production of transposable element-derived double-stranded RNAs, thereby hyperactivating the immune-inflammatory response. In addition, strong derepression of TEs in hypoxic cells lacking SETDB1 triggers DNA damage-induced death. Our collective results support a molecular mechanism of oxygen-dependent SETDB1 degradation by the CRL2VHL E3 complex and reveal a role of SETDB1 in genome stability under hypoxia.


Asunto(s)
Inestabilidad Genómica , N-Metiltransferasa de Histona-Lisina , Hipoxia , Humanos , Genes Supresores de Tumor , N-Metiltransferasa de Histona-Lisina/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
4.
BMC Genomics ; 25(1): 318, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549092

RESUMEN

BACKGROUND: Detecting structural variations (SVs) at the population level using next-generation sequencing (NGS) requires substantial computational resources and processing time. Here, we compared the performances of 11 SV callers: Delly, Manta, GridSS, Wham, Sniffles, Lumpy, SvABA, Canvas, CNVnator, MELT, and INSurVeyor. These SV callers have been recently published and have been widely employed for processing massive whole-genome sequencing datasets. We evaluated the accuracy, sequence depth, running time, and memory usage of the SV callers. RESULTS: Notably, several callers exhibited better calling performance for deletions than for duplications, inversions, and insertions. Among the SV callers, Manta identified deletion SVs with better performance and efficient computing resources, and both Manta and MELT demonstrated relatively good precision regarding calling insertions. We confirmed that the copy number variation callers, Canvas and CNVnator, exhibited better performance in identifying long duplications as they employ the read-depth approach. Finally, we also verified the genotypes inferred from each SV caller using a phased long-read assembly dataset, and Manta showed the highest concordance in terms of the deletions and insertions. CONCLUSIONS: Our findings provide a comprehensive understanding of the accuracy and computational efficiency of SV callers, thereby facilitating integrative analysis of SV profiles in diverse large-scale genomic datasets.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genómica , Humanos , Secuenciación Completa del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Genoma Humano , Variación Estructural del Genoma
5.
J Am Chem Soc ; 146(32): 22498-22508, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39079933

RESUMEN

The difluoromethyl group (CF2H) serves as an essential bioisostere in drug discovery campaigns according to Lipinski's Rule of 5 due to its advantageous combination of lipophilicity and hydrogen bonding ability, thereby improving the ADME properties. However, despite the high prevalence and importance of vicinal hydrogen bond donors in pharmaceutical agents, a general synthetic method for doubly difluoromethylated compounds in the vicinal position is absent. Here we describe a copper-electrocatalyzed strategy that enables the vicinal bis(difluoromethylation) of alkenes. By leveraging electrochemistry to oxidize Zn(CF2H)2(DMPU)2-a conventionally utilized anionic transmetalating source, we paved a way to utilize it as a CF2H radical source to deliver the CF2H group in the terminal position of alkenes. Mechanistic studies revealed that the interception of the resultant secondary radical by a copper catalyst and subsequent reductive elimination is facilitated by invoking the Cu(III) intermediate, enabling the second installation of the CF2H group in the internal position. The utility of this electrocatalytic 1,2-bis(difluoromethylation) strategy has been highlighted through the late-stage bioisosteric replacement of pharmaceutical agents such as sotalol and dipivefrine.

6.
PLoS Pathog ; 18(12): e1011028, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36584235

RESUMEN

Listeria monocytogenes (Lm) is a food-borne pathogen that causes severe bacterial gastroenteritis, with high rates of hospitalization and mortality. Lm is ubiquitous in soil, water and livestock, and can survive and proliferate at low temperatures. Following oral ingestion of contaminated food, Lm crosses the epithelium through intestinal goblet cells in a mechanism mediated by Lm InlA binding host E-cadherin. Importantly, human infections typically occur with Lm growing at or below room temperature, which is flagellated and motile. Even though many important human bacterial pathogens are flagellated, little is known regarding the effect of Lm motility on invasion and immune evasion. Here, we used complementary imaging and computer modeling approaches to test the hypothesis that bacterial motility helps Lm locate and engage target cells permissive for invasion. Imaging explanted mouse and human intestine, we showed that Lm grown at room temperature uses motility to scan the epithelial surface and preferentially attach to target cells. Furthermore, we integrated quantitative parameters from our imaging experiments to construct a versatile "layered" cellular Potts model (L-CPM) that simulates host-pathogen dynamics. Simulated data are consistent with the hypothesis that bacterial motility enhances invasion by allowing bacteria to search the epithelial surface for their preferred invasion targets. Indeed, our model consistently predicts that motile bacteria invade twice as efficiently over the first hour of infection. We also examined how bacterial motility affected interactions with host cellular immunity. In a mouse model of persistent infection, we found that neutrophils migrated to the apical surface of the epithelium 5 hours post infection and interacted with Lm. Yet in contrast to the view that neutrophils "hunt" for bacteria, we found that these interactions were driven by motility of Lm-which moved at least ~50x faster than neutrophils. Furthermore, our L-CPM predicts that motile bacteria maintain their invasion advantage even in the presence of host phagocytes, with the balance between invasion and phagocytosis governed almost entirely by bacterial motility. In conclusion, our simulations provide insight into host pathogen interaction dynamics at the intestinal epithelial barrier early during infection.


Asunto(s)
Enfermedades Intestinales , Listeria monocytogenes , Listeria , Listeriosis , Ratones , Animales , Humanos , Proteínas Bacterianas/metabolismo , Intestinos/microbiología
7.
Mol Psychiatry ; 28(3): 1351-1364, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36434054

RESUMEN

Spatial learning and memory flexibility are known to require long-term potentiation (LTP) and long-term depression (LTD), respectively, on a cellular basis. We previously showed that cyclin Y (CCNY), a synapse-remodeling cyclin, is a novel actin-binding protein and an inhibitory regulator of functional and structural LTP in vitro. In this study, we report that Ccny knockout (KO) mice exhibit enhanced LTP and weak LTD at Schaffer collateral-CA1 synapses in the hippocampus. In accordance with enhanced LTP, Ccny KO mice showed improved spatial learning and memory. However, although previous studies reported that normal LTD is necessary for memory flexibility, Ccny KO mice intriguingly showed improved memory flexibility, suggesting that weak LTD could exert memory flexibility when combined with enhanced LTP. At the molecular level, CCNY modulated spatial learning and memory flexibility by distinctively affecting the cofilin-actin signaling pathway in the hippocampus. Specifically, CCNY inhibited cofilin activation by original learning, but reversed such inhibition by reversal learning. Furthermore, viral-mediated overexpression of a phosphomimetic cofilin-S3E in hippocampal CA1 regions enhanced LTP, weakened LTD, and improved spatial learning and memory flexibility, thus mirroring the phenotype of Ccny KO mice. In contrast, the overexpression of a non-phosphorylatable cofilin-S3A in hippocampal CA1 regions of Ccny KO mice reversed the synaptic plasticity, spatial learning, and memory flexibility phenotypes observed in Ccny KO mice. Altogether, our findings demonstrate that LTP and LTD cooperatively regulate memory flexibility. Moreover, CCNY suppresses LTP while facilitating LTD in the hippocampus and negatively regulates spatial learning and memory flexibility through the control of cofilin-actin signaling, proposing CCNY as a learning regulator modulating both memorizing and forgetting processes.


Asunto(s)
Actinas , Aprendizaje Espacial , Ratones , Animales , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Ratones Noqueados , Ciclinas/genética , Ciclinas/metabolismo , Factores Despolimerizantes de la Actina/metabolismo
8.
J Med Libr Assoc ; 112(2): 142-144, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-39119154

RESUMEN

The DMPTool NIH Data Management and Sharing Plan (DMSP) Templates Project was launched in response to the 2023 NIH Data Management and Sharing (DMS) Policy. This new policy introduced a more structured framework for DMS Plans, featuring six key elements, a departure from the 2003 NIH DMS policy. The project aimed to simplify the process for data librarians, research administrators, and researchers by providing a template with curated guidance, eliminating the need to navigate various policies and guidelines. The template breaks out each Plan section and subsection and provides related guidance and examples at the point of need. This effort has resulted in two NIH DMSP Templates. The first is a generic template (NIH-Default) for all ICs, complying with NOT-OD-21-013 and NOT-OD-22-198. More recently, an NIMH-specific template (NIH-NIMH) was added based on NOT-MH-23-100. As of October 2023, over 5,000 DMS Plans have been written using the main NIH-Default template and the NIH-NIMH alternative template.


Asunto(s)
National Institutes of Health (U.S.) , Estados Unidos , National Institutes of Health (U.S.)/organización & administración , Humanos , Difusión de la Información/métodos , Manejo de Datos/métodos
9.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38892352

RESUMEN

Blackberries (Rubus fruticosus), which are known to include a variety of bioactive substances, have been extensively studied for their antioxidant properties. Blackberries possess multiple health beneficial effects, including anti-inflammation, anti-atherosclerosis, anti-tumor and immunomodulatory activity. However, the potential biological effects and precise molecular mechanisms of the fermented extracts remain largely unexplored. In this research, we demonstrate the effect of blackberries fermented with Lactobacillus for addressing obesity. We investigated the effect of blackberries fermented by Lactobacillus on mice fed a high-fat (60% kcal) diet for 12 weeks. Fermented blackberry administration reduced the body weight and epididymal fat caused by a high-fat diet compared to the obese group. The triglyceride and total cholesterol, which are blood lipid indicators, and the levels of leptin, which is an insulin resistance indicator, were significantly increased in the obese group but were significantly decreased in the fermented blackberries-treated group. Additionally, the expression of adipogenesis marker proteins, such as CEBPα, PPAR-γ and SREBP-1, was significantly increased in the obese group, whereas it was decreased in the fermented blackberries-treated group. These results suggest that fermented blackberries have a protective effect against high-fat-diet-induced obesity by inhibiting adipogenesis and are a potential candidate for the treatment of obesity.


Asunto(s)
Adipogénesis , Fármacos Antiobesidad , Dieta Alta en Grasa , Fermentación , Lactobacillus plantarum , Obesidad , PPAR gamma , Rubus , Transducción de Señal , Animales , Adipogénesis/efectos de los fármacos , Rubus/química , Ratones , Obesidad/metabolismo , Fármacos Antiobesidad/farmacología , Masculino , Dieta Alta en Grasa/efectos adversos , PPAR gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Ratones Endogámicos C57BL , Leptina/metabolismo , Leptina/sangre , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Triglicéridos/sangre , Triglicéridos/metabolismo , Peso Corporal/efectos de los fármacos
10.
PLoS Pathog ; 17(9): e1009493, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34555127

RESUMEN

Listeria monocytogenes is an intracellular bacterium that elicits robust CD8+ T-cell responses. Despite the ongoing development of L. monocytogenes-based platforms as cancer vaccines, our understanding of how L. monocytogenes drives robust CD8+ T-cell responses remains incomplete. One overarching hypothesis is that activation of cytosolic innate pathways is critical for immunity, as strains of L. monocytogenes that are unable to access the cytosol fail to elicit robust CD8+ T-cell responses and in fact inhibit optimal T-cell priming. Counterintuitively, however, activation of known cytosolic pathways, such as the inflammasome and type I IFN, lead to impaired immunity. Conversely, production of prostaglandin E2 (PGE2) downstream of cyclooxygenase-2 (COX-2) is essential for optimal L. monocytogenes T-cell priming. Here, we demonstrate that vacuole-constrained L. monocytogenes elicit reduced PGE2 production compared to wild-type strains in macrophages and dendritic cells ex vivo. In vivo, infection with wild-type L. monocytogenes leads to 10-fold increases in PGE2 production early during infection whereas vacuole-constrained strains fail to induce PGE2 over mock-immunized controls. Mice deficient in COX-2 specifically in Lyz2+ or CD11c+ cells produce less PGE2, suggesting these cell subsets contribute to PGE2 levels in vivo, while depletion of phagocytes with clodronate abolishes PGE2 production completely. Taken together, this work demonstrates that optimal PGE2 production by phagocytes depends on L. monocytogenes access to the cytosol, suggesting that one reason cytosolic access is required to prime CD8+ T-cell responses may be to facilitate production of PGE2.


Asunto(s)
Células Dendríticas/inmunología , Dinoprostona/biosíntesis , Dinoprostona/inmunología , Listeriosis/inmunología , Macrófagos/inmunología , Animales , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Femenino , Listeria monocytogenes/inmunología , Activación de Linfocitos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL
11.
BMC Microbiol ; 23(1): 336, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951857

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a multifactorial chronic inflammatory disease resulting from dysregulation of the mucosal immune response and gut microbiota. Crohn's disease (CD) and ulcerative colitis (UC) are difficult to distinguish, and differential diagnosis is essential for establishing a long-term treatment plan for patients. Furthermore, the abundance of mucosal bacteria is associated with the severity of the disease. This study aimed to differentiate and diagnose these two diseases using the microbiome and identify specific biomarkers associated with disease activity. RESULTS: Differences in the abundance and composition of the microbiome between IBD patients and healthy controls (HC) were observed. Compared to HC, the diversity of the gut microbiome in patients with IBD decreased; the diversity of the gut microbiome in patients with CD was significantly lower. Sixty-eight microbiota members (28 for CD and 40 for UC) associated with these diseases were identified. Additionally, as the disease progressed through different stages, the diversity of the bacteria decreased. The abundances of Alistipes shahii and Pseudodesulfovibrio aespoeensis were negatively correlated with the severity of CD, whereas the abundance of Polynucleobacter wianus was positively correlated. The severity of UC was negatively correlated with the abundance of A. shahii, Porphyromonas asaccharolytica and Akkermansia muciniphilla, while it was positively correlated with the abundance of Pantoea candidatus pantoea carbekii. A regularized logistic regression model was used for the differential diagnosis of the two diseases. The area under the curve (AUC) was used to examine the performance of the model. The model discriminated UC and CD at an AUC of 0.873 (train set), 0.778 (test set), and 0.633 (validation set) and an area under the precision-recall curve (PRAUC) of 0.888 (train set), 0.806 (test set), and 0.474 (validation set). CONCLUSIONS: Based on fecal whole-metagenome shotgun (WMS) sequencing, CD and UC were diagnosed using a machine-learning predictive model. Microbiome biomarkers associated with disease activity (UC and CD) are also proposed.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Colitis Ulcerosa/terapia , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/microbiología , Enfermedades Inflamatorias del Intestino/microbiología , Bacterias/genética , Biomarcadores
12.
Proc Natl Acad Sci U S A ; 117(29): 17142-17150, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32636256

RESUMEN

Gut microbes play diverse roles in modulating host fitness, including longevity; however, the molecular mechanisms underlying their mediation of longevity remain poorly understood. We performed genome-wide screens using 3,792 Escherichia coli mutants and identified 44 E. coli mutants that modulated Caenorhabditis elegans longevity. Three of these mutants modulated C. elegans longevity via the bacterial metabolite methylglyoxal (MG). Importantly, we found that low MG-producing E. coli mutants, Δhns E. coli, extended the lifespan of C. elegans through activation of the DAF-16/FOXO family transcription factor and the mitochondrial unfolded protein response (UPRmt). Interestingly, the lifespan modulation by Δhns did not require insulin/insulin-like growth factor 1 signaling (IIS) but did require TORC2/SGK-1 signaling. Transcriptome analysis revealed that Δhns E. coli activated novel class 3 DAF-16 target genes that were distinct from those regulated by IIS. Taken together, our data suggest that bacteria-derived MG modulates host longevity through regulation of the host signaling pathways rather than through nonspecific damage on biomolecules known as advanced glycation end products. Finally, we demonstrate that MG enhances the phosphorylation of hSGK1 and accelerates cellular senescence in human dermal fibroblasts, suggesting the conserved role of MG in controlling longevity across species. Together, our studies demonstrate that bacteria-derived MG is a novel therapeutic target for aging and aging-associated pathophysiology.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Factores de Transcripción Forkhead/metabolismo , Longevidad/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvaldehído , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Modelos Biológicos , Piruvaldehído/metabolismo , Piruvaldehído/farmacología , Transducción de Señal/efectos de los fármacos , Transcriptoma/genética
13.
Genes Dev ; 29(15): 1605-17, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26215566

RESUMEN

The myogenic capacity of myoblasts decreases in skeletal muscle with age. In addition to environmental factors, intrinsic factors are important for maintaining the regenerative potential of muscle progenitor cells, but their identities are largely unknown. Here, comparative analysis of microRNA (miRNA) expression profiles in young and old myoblasts uncovered miR-431 as a novel miRNA showing markedly reduced abundance in aged myoblasts. Importantly, elevating miR-431 improved the myogenic capacity of old myoblasts, while inhibiting endogenous miR-431 lowered myogenesis. Bioinformatic and biochemical analyses revealed that miR-431 directly interacted with the 3' untranslated region (UTR) of Smad4 mRNA, which encodes one of the downstream effectors of TGF-ß signaling. In keeping with the low levels of miR-431 in old myoblasts, SMAD4 levels increased in this myoblast population. Interestingly, in an in vivo model of muscle regeneration following cardiotoxin injury, ectopic miR-431 injection greatly improved muscle regeneration and reduced SMAD4 levels. Consistent with the finding that the mouse miR-431 seed sequence in the Smad4 3' UTR is conserved in the human SMAD4 3' UTR, inhibition of miR-431 also repressed the myogenic capacity of human skeletal myoblasts. Taken together, our results suggest that the age-associated miR-431 plays a key role in maintaining the myogenic ability of skeletal muscle with age.


Asunto(s)
Diferenciación Celular , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/fisiología , Mioblastos/citología , Regeneración/genética , Proteína Smad4/genética , Regiones no Traducidas 3' , Animales , Línea Celular , Senescencia Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Músculo Esquelético/citología , Unión Proteica
14.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511425

RESUMEN

Cervi cornu extracts have been used in traditional medicine for the treatment of various disorders, including osteoporosis. However, since it is not easy to separate the active ingredients, limited research has been conducted on their functional properties. In this study, we extracted the low-molecular-weight (843 Da) collagen NP-2007 from cervi cornu by enzyme hydrolyzation to enhance absorption and evaluated the therapeutic effect in monosodium iodoacetate-induced rat osteoarthritis (OA) model. NP-2007 was orally administered at 50, 100, and 200 mg/kg for 21 days. We showed that the production of matrix metalloproteinase-2, -3, and -9, decreased after NP-2007 treatment. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and prostaglandin E2 were also reduced after treatment of NP-2007. Furthermore, the administration of NP-2007 resulted in effective preservation of both the synovial membrane and knee cartilage and significantly decreased the transformation of fibrous tissue. We verified that the treatment of NP-2007 significantly reduced the production of nitric oxide and pro-inflammatory cytokines including TNF-α, IL-1ß, and IL-6 in lipopolysaccharides-stimulated RAW 264.7 cells by regulation of the NF-kB and MAPK signaling pathways. This study indicates that NP-2007 can alleviate symptoms of osteoarthritis and can be applied as a novel treatment for OA treatment.


Asunto(s)
Cornus , Osteoartritis , Ratas , Animales , Metaloproteinasa 2 de la Matriz , Interleucina-6/farmacología , Osteoartritis/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Colágeno/farmacología , Condrocitos/metabolismo
15.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982190

RESUMEN

Mutations in MeCP2 result in a crippling neurological disease, but we lack a lucid picture of MeCP2's molecular role. Individual transcriptomic studies yield inconsistent differentially expressed genes. To overcome these issues, we demonstrate a methodology to analyze all modern public data. We obtained relevant raw public transcriptomic data from GEO and ENA, then homogeneously processed it (QC, alignment to reference, differential expression analysis). We present a web portal to interactively access the mouse data, and we discovered a commonly perturbed core set of genes that transcends the limitations of any individual study. We then found functionally distinct, consistently up- and downregulated subsets within these genes and some bias to their location. We present this common core of genes as well as focused cores for up, down, cell fraction models, and some tissues. We observed enrichment for this mouse core in other species MeCP2 models and observed overlap with ASD models. By integrating and examining transcriptomic data at scale, we have uncovered the true picture of this dysregulation. The vast scale of these data enables us to analyze signal-to-noise, evaluate a molecular signature in an unbiased manner, and demonstrate a framework for future disease focused informatics work.


Asunto(s)
Síndrome de Rett , Ratones , Animales , Síndrome de Rett/genética , Transcriptoma , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Perfilación de la Expresión Génica , Mutación , Modelos Animales de Enfermedad
16.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834250

RESUMEN

We investigated whether the response to anti-tumor necrosis factor (anti-TNF) treatment varied according to inflammatory tissue characteristics in Crohn's disease (CD). Bulk RNA sequencing (RNA-seq) data were obtained from inflamed and non-inflamed tissues from 170 patients with CD. The samples were clustered based on gene expression profiles using principal coordinate analysis (PCA). Cellular heterogeneity was inferred using CiberSortx, with bulk RNA-seq data. The PCA results displayed two clusters of CD-inflamed samples: one close to (Inflamed_1) and the other far away (Inflamed_2) from the non-inflamed samples. Inflamed_1 was rich in anti-TNF durable responders (DRs), and Inflamed_2 was enriched in non-durable responders (NDRs). The CiberSortx results showed that the cell fraction of activated fibroblasts was six times higher in Inflamed_2 than in Inflamed_1. Validation with public gene expression datasets (GSE16879) revealed that the activated fibroblasts were enriched in NDRs over Next, we used DRs by 1.9 times pre-treatment and 7.5 times after treatment. Fibroblast activation protein (FAP) was overexpressed in the Inflamed_2 and was also overexpressed in the NDRs in both the RISK and GSE16879 datasets. The activation of fibroblasts may play a role in resistance to anti-TNF therapy. Characterizing fibroblasts in inflamed tissues at diagnosis may help to identify patients who are likely to respond to anti-TNF therapy.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Inhibidores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , ARN/metabolismo , Fibroblastos/metabolismo , Necrosis/metabolismo
17.
Hum Mutat ; 43(6): 743-759, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35224820

RESUMEN

Next-generation sequencing is a prevalent diagnostic tool for undiagnosed diseases and has played a significant role in rare disease gene discovery. Although this technology resolves some cases, others are given a list of possibly damaging genetic variants necessitating functional studies. Productive collaborations between scientists, clinicians, and patients (affected individuals) can help resolve such medical mysteries and provide insights into in vivo function of human genes. Furthermore, facilitating interactions between scientists and research funders, including nonprofit organizations or commercial entities, can dramatically reduce the time to translate discoveries from bench to bedside. Several systems designed to connect clinicians and researchers with a shared gene of interest have been successful. However, these platforms exclude some stakeholders based on their role or geography. Here we describe ModelMatcher, a global online matchmaking tool designed to facilitate cross-disciplinary collaborations, especially between scientists and other stakeholders of rare and undiagnosed disease research. ModelMatcher is integrated into the Rare Diseases Models and Mechanisms Network and Matchmaker Exchange, allowing users to identify potential collaborators in other registries. This living database decreases the time from when a scientist or clinician is making discoveries regarding their genes of interest, to when they identify collaborators and sponsors to facilitate translational and therapeutic research.


Asunto(s)
Enfermedades no Diagnosticadas , Bases de Datos Factuales , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Sistema de Registros , Investigadores
18.
Infect Immun ; 90(2): e0057221, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34807735

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) isolates are genetically diverse pathological variants of E. coli defined by the production of heat-labile (LT) and/or heat-stable (ST) toxins. ETEC strains are estimated to cause hundreds of millions of cases of diarrheal illness annually. However, it is not clear that all strains are equally equipped to cause disease, and asymptomatic colonization with ETEC is common in low- to middle-income regions lacking basic sanitation and clean water where ETEC are ubiquitous. Recent molecular epidemiology studies have revealed a significant association between strains that produce EatA, a secreted autotransporter protein, and the development of symptomatic infection. Here, we demonstrate that LT stimulates production of MUC2 mucin by goblet cells in human small intestine, enhancing the protective barrier between pathogens and enterocytes. In contrast, using explants of human small intestine as well as small intestinal enteroids, we show that EatA counters this host defense by engaging and degrading the MUC2 mucin barrier to promote bacterial access to target enterocytes and ultimately toxin delivery, suggesting that EatA plays a crucial role in the molecular pathogenesis of ETEC. These findings may inform novel approaches to prevention of acute diarrheal illness as well as the sequelae associated with ETEC and other pathogens that rely on EatA and similar proteases for efficient interaction with their human hosts.


Asunto(s)
Toxinas Bacterianas , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Diarrea , Enterocitos , Escherichia coli Enterotoxigénica/metabolismo , Enterotoxinas/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Intestino Delgado , Mucina 2/genética , Mucina 2/metabolismo , Mucinas/metabolismo
19.
Psychooncology ; 31(2): 167-175, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34460129

RESUMEN

OBJECTIVE: Identifying modifiable factors affecting work ability among cancer survivors is important. The primary aim of the present study was to examine the effects of depression and related psychological factors on work ability among breast cancer survivors in Australia. METHODS: In this cross-sectional electronic and postal survey, Australian breast cancer survivors were investigated. Work status and conditions before and after cancer treatment were analysed. Work ability was measured using the Work Limitation Questionnaire©-Short Form (WLQ-SF) with its four domains (time management, physical tasks, mental-interpersonal tasks, and output tasks). Three psychological factors were investigated: depression, fear of cancer recurrence, and demoralisation. Sociodemographic and clinical data were also collected. Multivariate regression analysis was used to identify the associations of psychological factors with WLQ-SF. RESULTS: Among eligible survivors, 310 (50%) responded to the survey and were analysed. Nearly one third reported their work conditions had changed after cancer treatment. The depressed group reported limited work ability in 35%-44% of the four domains of WLQ-SF, while the non-depressed group reported limited work ability in only 8%-13%. At-work productivity loss was approximately fourfold higher in the depressed group than in the non-depressed group. In multivariate analysis, at-work productivity loss was associated with depression, demoralisation, and past history of anxiety. CONCLUSIONS: After breast cancer treatment, work conditions changed toward lower wages and working hours. Depression, demoralisation, and past history of anxiety were associated with lower work ability. Further evaluations of work rehabilitation in breast cancer survivors are warranted.


Asunto(s)
Neoplasias de la Mama , Supervivientes de Cáncer , Ansiedad/epidemiología , Australia , Neoplasias de la Mama/psicología , Neoplasias de la Mama/terapia , Supervivientes de Cáncer/psicología , Estudios Transversales , Depresión/epidemiología , Depresión/psicología , Femenino , Humanos , Recurrencia Local de Neoplasia , Calidad de Vida/psicología , Sobrevivientes/psicología , Evaluación de Capacidad de Trabajo
20.
Proc Natl Acad Sci U S A ; 116(17): 8289-8294, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30948645

RESUMEN

DNA-reactive compounds are harnessed for cancer chemotherapy. Their genotoxic effects are considered to be the main mechanism for the cytotoxicity to date. Because this mechanism preferentially affects actively proliferating cells, it is postulated that the cytotoxicity is specific to cancer cells. Nonetheless, they do harm normal quiescent cells, suggesting that there are other cytotoxic mechanisms to be uncovered. By employing doxorubicin as a representative DNA-reactive compound, we have discovered a cytotoxic mechanism that involves a cellular noncoding RNA (ncRNA) nc886 and protein kinase R (PKR) that is a proapoptotic protein. nc886 is transcribed by RNA polymerase III (Pol III), binds to PKR, and prevents it from aberrant activation in most normal cells. We have shown here that doxorubicin evicts Pol III from DNA and, thereby, shuts down nc886 transcription. Consequently, the instantaneous depletion of nc886 provokes PKR and leads to apoptosis. In a short-pulse treatment of doxorubicin, these events are the main cause of cytotoxicity preceding the DNA damage response in a 3D culture system as well as the monolayer cultures. By identifying nc886 as a molecular signal for PKR to sense doxorubicin, we have provided an explanation for the conundrum why DNA-damaging drugs can be cytotoxic to quiescent cells that have the competent nc886/PKR pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , ADN/metabolismo , MicroARNs/metabolismo , ARN no Traducido , Línea Celular , Doxorrubicina/farmacología , Humanos , MicroARNs/genética , ARN Polimerasa III/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Transducción de Señal/efectos de los fármacos , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA