Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Chemosphere ; 307(Pt 3): 136056, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35973502

RESUMEN

Water plasma coupled with mist generator was introduced to perform the decomposition of caffeine (CAF) wastewater. The mist-shaped water molecule was directly used for plasma-forming gas with no additional gas. The influence of arc current on the decomposition of CAF was elucidated in detail. With the increase of input power from 0.8 to 1.1 kW according to arc current, the removal efficiency of total organic carbon (TOC) and CAF increased, reaching 91.1 and 99.8% at 9.5 A, respectively. H2, CO, CO2, and N2 were major effluent gaseous species, of which the H2 generation was more than 40% for all conditions. The concentration of nitrate in the effluent liquids was the highest at 9.5 A due to a higher oxidation environment. The H, O, and OH as reactive species formed via the dissociation of water molecules were demonstrated, and the plasma temperatures were at over 5000 K. The detailed decomposition pathway was deduced based on eleven intermediate products identified in this process. Electron impact and hydroxyl radical were found to take leading roles in the decomposition of CAF.


Asunto(s)
Aguas Residuales , Agua , Cafeína , Carbono , Dióxido de Carbono , Gases , Radical Hidroxilo , Nitratos
2.
Materials (Basel) ; 13(8)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32294925

RESUMEN

This study aims to examine the mechanical, shrinkage and chemical properties of photocatalytic cementitious materials containing synthetic fibers and a shrinkage-reducing admixture (SRA). Two types of titanium dioxide (TiO2) powders and white Portland cement were considered along with ordinary Portland cement (OPC) as a control. Two types of synthetic fibers, i.e., glass and polyethylene (PE), and an SRA with contents varying from 0% to 3% were also considered. Using the TiO2 powders and the white Portland cement was effective in reducing the nitrogen oxides (NOx) concentration in cement composites. The use of PE fibers was more effective than glass fibers in terms of the mechanical properties, i.e., the compressive strength and tensile performance. With the addition of TiO2 powders and SRA or the replacement of OPC with white cement, the mechanical properties of the cement mortar generally deteriorated. The total shrinkage of the mortar could be reduced by incorporating the fibers at volume fractions greater than 1%, and the glass fiber was more effective than the PE fiber in this regard. The TiO2 powders had no significant impact on the shrinkage reduction of the cement mortar, whereas the SRA and the white Portland cement effectively reduced shrinkage. The addition of 3% SRA decreased the total shrinkage by 43%, while the replacement of the OPC with white cement resulted in a 20% reduction in the shrinkage.

3.
Patterns (N Y) ; 1(7): 100105, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33205138

RESUMEN

Heterogeneous and multidisciplinary data generated by research on sustainable global agriculture and agrifood systems requires quality data labeling or annotation in order to be interoperable. As recommended by the FAIR principles, data, labels, and metadata must use controlled vocabularies and ontologies that are popular in the knowledge domain and commonly used by the community. Despite the existence of robust ontologies in the Life Sciences, there is currently no comprehensive full set of ontologies recommended for data annotation across agricultural research disciplines. In this paper, we discuss the added value of the Ontologies Community of Practice (CoP) of the CGIAR Platform for Big Data in Agriculture for harnessing relevant expertise in ontology development and identifying innovative solutions that support quality data annotation. The Ontologies CoP stimulates knowledge sharing among stakeholders, such as researchers, data managers, domain experts, experts in ontology design, and platform development teams.

4.
Polymers (Basel) ; 10(8)2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30960804

RESUMEN

The hybrid effect of twisted steel (T) fibers with an aspect ratio of 100 and polyethylene (PE) fibers with four different aspect ratios of 400, 600, 900, and 1200 on the mechanical performance of ultra-high-performance cementitious composite (UHPCC) was investigated. This involved a total of 17 different sample types at an identical fiber volume fraction of 2% being made and subjected to compressive and tensile loads. Samples were made by replacing 0.5%, 1.0%, 1.5%, and 2.0% of T fibers with four different types of PE fibers. In addition, the pullout behaviors of fibers at cracked sections and the cracking behaviors of specimens were evaluated in order to determine the effect of the pullout mechanism of each fiber on the overall tensile performance. Test results indicate that the compressive strength decreased in proportion to the amount of PE fibers, regardless of their aspect ratio. The fiber hybridization had a great synergetic effect, successfully improving the tensile strength and strain capacity of UHPCCs; this effect was dependent on the aspect ratio of the PE fibers. Finally, the cracking behaviors were determined to be more related to the fiber type and pullout mechanisms than the tensile strength or strain capacity of UHPCCs.

5.
J Nanosci Nanotechnol ; 6(11): 3567-71, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17252813

RESUMEN

The preferential CO oxidation in the presence of excess hydrogen was studied over Pt-Co/gamma-Al2O3. CO chemisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDX) and temperature programmed reduction (TPR) were conducted to characterize active catalysts. The catalytic activity for CO oxidation and methanation at low temperatures increased with the amounts of cobalt in Pt-Co/gamma-Al2O3. This accompanied the TPR peak shift to lower temperatures. The optimum molar ratio between Co and Pt was determined to be 10. The co-impregnated Pt-Co/gamma-Al2O3 appeared to be superior to Pt/Co/gamma-Al2O3 and Co/Pt/gamma-Al2O3. The reductive pretreatment at high temperature such as 773 K increased the CO2 selectivity over a wide reaction temperature. The bimetallic phase of Pt-Co seems to give rise to high catalytic activity in selective oxidation of CO in H2-rich stream.


Asunto(s)
Monóxido de Carbono/química , Cobalto/química , Nanopartículas/química , Nanotecnología/métodos , Platino (Metal)/química , Catálisis , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión , Modelos Químicos , Nanotecnología/instrumentación , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA