Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Microb Ecol ; 73(3): 556-569, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27889811

RESUMEN

Microbial diversity patterns have been surveyed in many different soils and ecosystems, but we are unaware of studies comparing similar soils developing from similar parent materials in contrasting climates. In 2008, developmental chronosequences with ages ranging from 105 to 500,000 years across Georgia (GA) and Michigan (MI) were studied to investigate how bacterial community composition and diversity change as a result of local environmental gradients that develop during pedogenesis. Geographic factors were studied between and within locations spanning two scales: (1) regionally between 0.1 and 50 and (2) ∼1700 km apart. The diversity was surveyed using high-throughput pyrosequencing, and variance partitioning was used to describe the effects of spatial, environmental, and spatio-environmental factors on bacterial community composition. At the local scale, variation in bacterial communities was most closely related to environmental factors (rM = 0.59, p = 0.0001). There were differences in bacterial communities between the two locations, indicating spatial biogeography. Estimates of bacterial diversity were much greater in MI (numbers of OTU, ACE, and Chao1) and remained 2-3× greater in MI than GA after removing the effect of soil properties. The large differences in diversity between geographically separated bacterial communities in different climates need further investigation. It is not known if the rare members of the community, which contributed to greater bacterial diversity in GA relative to MI, play an important role in ecosystem function but has been hypothesized to play a role in ecosystem resiliency, resistance, and stability. Further research on the link between bacterial diversity and spatial variability related to climate needs further investigation.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Ecosistema , Microbiota/genética , Microbiología del Suelo , Secuencia de Bases , Biodiversidad , Clima , ADN Bacteriano/genética , Geografía , Georgia , Michigan , Plantas/clasificación , Plantas/microbiología , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-20390869

RESUMEN

St. Louis Bay, along with its two major tributaries, Wolf River and Jourdan River, are included in the Mississippi 1998 Section 303(d) List for violation of the designated water use of recreation and shellfish harvesting. Fecal coliform was identified as one of the pollutants that caused the water quality impairment. In order to facilitate the total maximum daily loads (TMDL) development, the fecal coliform dynamics was investigated under 2 flow scenarios with a calibrated and validated modeling framework by integration of Environmental Fluid Dynamic Code (EFDC) and Hydrological Simulation Program Fortran (HSPF). EFDC was used to model the hydrodymics and fecal coliform transportation in the Bay and the tributaries, whereas HSPF was applied to compute the flow and fecal coliform loadings from the watersheds. The total amount of precipitation in the dry year simulation corresponds to a 50-year return period of low flow condition, and a 10-year return period of high flow condition for wet weather simulation. For EFDC modeling, the fecal coliform sources considered were the contributions from the 2 upper watersheds (no tidal influence), the 28 small surrounding watershed, and 12 municipal, industrial, and domestic point sources. When simulating the fecal coliform loadings from the 2 upper watersheds using HSPF, the simulated non-point source loadings of fecal coliform included wildlife, land application of hog and cattle manure, land application of poultry litter, and grazing animals. The EFDC modeling results indicated that the wet weather exerted greater stress on fecal coliform water quality conditions. The number of exceedance of fecal coliform water quality standard in wet year simulation is much higher than that in dry year simulation. The impact of the upper rural watersheds loads on fecal coliform levels in the St. Louis Bay is much less significant than that from the surrounding urban runoff. Fecal coliform TMDL development should be based on high flow conditions since the decision makers are more concerned about worse scenarios. This fecal coliform modeling research would provide useful information of critical condition selection for TMDLs development in similar coastal areas.


Asunto(s)
Enterobacteriaceae/aislamiento & purificación , Monitoreo del Ambiente/métodos , Heces/microbiología , Agua Dulce/microbiología , Mississippi , Microbiología del Agua
4.
J Agric Food Chem ; 55(3): 844-51, 2007 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-17263484

RESUMEN

Soil sorption and dissipation of fluometuron (FLM) and three metabolites, desmethyl fluometuron (DMF), trifluoromethyl phenyl urea (TFMPU), and trifluoromethyl aniline (TFMA), were assessed in conservation tillage soils. In study I, surface Dundee silt loam soils from no-tillage (NT) and reduced-tillage (RT) areas were treated with 14C ring-labeled FLM or TFMA or unlabeled DMF, incubated for 34-42 days, extracted, and analyzed. Mineralization and volatilization of 14C-labeled FLM or TFMA were monitored. In study II, batch sorption assays (solute concentrations 2-50 micromol L-1; 2:1 solution:soil; 18 h) were conducted using various soils from reduced- (RT) and conventional-tillage (CT) areas to determine the relative affinity of FLM and metabolites for soils with differing characteristics. Mineralization of FLM (3%, day 42) or TFMA (4%, day 34) and FLM volatilization (approximately 2%) were low for both soils. FLM and DMF dissipated more rapidly in RT soil than in NT soil. In FLM-treated RT soil, DMF and TFMPU accumulated more rapidly than in NT as FLM degraded. TFMA dissipated rapidly, primarily as nonextractable residues (approximately 70%, day 42) and volatilization (approximately 16%). For all respective soils in study II, sorption of all four compounds was higher for organic C-enriched RT soils than for CT soils, indicating strong relationships between organic C and FLM and metabolite sorption. For either tillage treatment, the percentage sorption was greater for metabolites (e.g., at lowest initial dosing concentration, TFMPU range, 45-91%; DMF range, 45-90%; and TFMA range, 45-98%) than for FLM (RT soils range, 19-65%). Nonsubstituted amino groups likely facilitated sorption to organic C, with nonsubstituted aniline in TFMA having the greatest affinity. NMR spectra of humic acid extracts from NT and CT Dundee soils indicated similar patterns of humic acid functional groups, but the potential capacity for sorption was greater in NT than in CT. The greater capacity for FLM and metabolite sorption in NT soil helps explain their longer persistence.


Asunto(s)
Herbicidas , Compuestos de Metilurea/química , Compuestos de Metilurea/metabolismo , Suelo/análisis , Adsorción , Gossypium/crecimiento & desarrollo , Sustancias Húmicas/análisis , Cinética , Espectroscopía de Resonancia Magnética , Minerales/metabolismo , Microbiología del Suelo , Volatilización
5.
Environ Toxicol Chem ; 26(7): 1340-8, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17665672

RESUMEN

Nuclear magnetic resonance (NMR) microimaging is a noninvasive and nondestructive technique that has great potential for the study of soil processes. Hydrogen-1 NMR microimaging techniques were used to examine the distribution of water in four different soil cores. Fluorine-19 NMR microimaging is also used to study the transport of three model contaminants (hexafluorobenzene, sodium fluoride, and trifluralin) in soil columns. The 1H water distribution studies demonstrate that NMR microimaging can provide unique detail regarding the nature and location of water in soils. Image distortion (magnetic susceptibility) was observed for soil samples low in water (20-28% by weight) and that contained an iron content of 0.73 to 0.99%. Highly resolved images were obtained for the organic-rich soil (Croatan sample) and also facilitated the analysis of bound and unbound soil water through varying spin echo times. The contaminant studies with 19F NMR demonstrated that preferential flow processes can be observed in soil cores in as little as 16 h. Studies with hexafluorobenzene produced the highest quality images whereas the definition decreased over time with both trifluralin and sodium fluoride as the compounds penetrated the soil. Nonetheless, both 1H and 19F NMR microimaging techniques demonstrate great promise for studying soil processes.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Suelo/análisis , Agua/química , Flúor , Protones
6.
J Environ Qual ; 31(2): 388-92, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11931425

RESUMEN

Understanding pollutant sorption, bioremediation of these pollutants, and their interactions with humic substances requires knowledge of molecular-level processes. New developments with nuclear magnetic resonance (NMR) experiments and labeled compounds have improved the overall understanding of these mechanisms. The advancements made with two-dimensional NMR show great promise, as structural information and hydrogen-carbon bond connectivity can be discerned. This communication presents the application of improved two-dimensional NMR methods, the double quantum filtered (DQF) correlation spectroscopy (COSY) and echo/anti-echo heteronuclear single quantum coherence (HSQC) experiments, for use in structural studies of humic substances. Both experiments were found to produce significant improvements over the conventional COSY and heteronuclear multiple quantum coherence (HMQC) experiments that have been previously employed in similar studies. The more sensitive echo/anti-echo HSQC experiment produced more cross-peaks with higher resolution when compared with the HMQC spectra. The DQF-COSY significantly suppressed the diagonal signals and allowed numerous signals previously hidden in the standard COSY experiment to be observed. These improvements will aid current characterization strategies of humic substances from soils, sediments, and water and their subsequent reactions with pollutants and microorganisms.


Asunto(s)
Monitoreo del Ambiente/métodos , Sustancias Húmicas/análisis , Espectroscopía de Resonancia Magnética/métodos , Biodegradación Ambiental , Contaminantes Ambientales , Sedimentos Geológicos/química , Microbiología del Suelo , Contaminantes del Suelo/análisis
7.
Environ Sci Technol ; 44(2): 624-30, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20030309

RESUMEN

The substantial heterogeneity of dissolved organic matter (DOM) inhibits detailed chromatographic analysis with conventional detectors as little structural information can be obtained in the presence of extensive coelution. Here we examine the direct hyphenation of high-performance size exclusion chromatography (HPSEC) with nuclear magnetic resonance (NMR) spectroscopy to determine how size-distinguished fractions differ in composition. The results support the applicability of using HPSEC to generate more homogeneous fractions of DOM prior to NMR analysis and demonstrate that structure is significantly altered with size. The largest fractions are enriched in carbohydrate- and aromatic-type structures. The midsized material is substantial and is representative of carboxyl-rich alicyclic molecules (CRAMs). The smallest material has strong signatures of material derived from linear terpenoids (MDLT). Both CRAMs and MDLT have been recently hypothesized as major components of DOM, and detection by HPSEC-NMR confirms their existence as unique and separable entities. This preliminary work focuses on NMR hyphenation to HPSEC due to widespread use of HPSEC to characterize DOM. Online hyphenation is useful not only for time-efficient analysis of DOM but also for that of other highly complex samples such as those found in many environmental analyses.


Asunto(s)
Cromatografía en Gel/métodos , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía de Resonancia Magnética/métodos , Compuestos Orgánicos/química , Agua/química , Tamaño de la Partícula
8.
Artículo en Inglés | MEDLINE | ID: mdl-18324533

RESUMEN

The water quality data from 14 sampling stations in the St. Louis Bay watershed were analyzed to evaluate the water quality conditions. The differences in water quality parameters between base and storm flow events were compared to identify the pollutant sources. The results indicated that fecal coliform was the primary cause for water quality impairment of the study area. The overall water quality conditions were good in terms of dissolved oxygen, eutrophication, and total suspended solid (TSS). The dominant sources of bio-chemical oxygen demand (BOD) could be from the failing septic system; the majority of the water samples exceeding Mississippi Department of Environmental Quality (MDEQ) target levels were from base flow events. Different from BOD, the majority of the water samples exceeding the water quality criteria and MDEQ target levels were from the storm events for fecal coliform, chemical oxygen demand, total organic carbon, TKN, NO(3), NH(3), chlorophyll a, and TSS. Based on cluster analysis, the sampling stations were classified into two major categories: upstream and near-coast stations. The major differences between upstream and near-coast stations are elevation, soil texture, and impacts of human activity. The results from this research would provide useful information for total maximum daily load calculation, development of a computational watershed model, and development of best management practices for the St. Louis Bay watershed and similar study area.


Asunto(s)
Contaminantes del Agua/análisis , Agua/normas , Monitoreo del Ambiente , Missouri
9.
Artículo en Inglés | MEDLINE | ID: mdl-18393072

RESUMEN

Previous research results indicated that dry weather condition has complicated impacts on nitrogen dynamics; monitored and modeling data showed both increased and decreased levels. In order to facilitate the total maximum daily loads (TMDLs) development at three tributaries of St. Louis Bay estuary, the nitrogen dynamics were investigated for two designed critical flow conditions by integrating Hydrological Simulation Program Fortran (HSPF), Environmental Fluid Dynamics Code (EFDC), and Water Quality Analysis Simulation Program (WASP). The total amount of precipitation during the dry year corresponded to a flow condition with return period of 50 years, and 10-year return period for wet year. The dry year contributed more total nitrogen (TN) loads per unit flow volume. At the upstream tributaries, the computed peak reach-averaged TN concentrations were significantly higher for dry weather simulation than wet conditions, whereas at the near-bay tributary, there were no significant differences in the peak TN concentrations. Hence, for the upstream tributaries, the nitrogen TMDL calculation should be based on dry weather condition since the decision-makers are more concerned about the worse scenario.


Asunto(s)
Modelos Teóricos , Nitrógeno/análisis , Agua , Mississippi
10.
Artículo en Inglés | MEDLINE | ID: mdl-18444076

RESUMEN

This study performs a comparison of two nutrient algorithms of Hydrological Simulation Program Fortran, PQUAL/IQUAL and AGCHEM. Watershed nutrient models with, PQUAL/IQUAL and AGCHEM, were developed and calibrated separately with observed data in the Wolf River watershed. Compared to AGCHEM modules, the PQUAL/IQUAL algorithm was found to have several disadvantages. Examples are: (i) it is a simple loading estimation algorithm, and cannot represent the soil nutrient processes; and (ii) the interactions of modeled nutrient species in the soil cannot be simulated. The AGCHEM modules are capable of explicitly representing the comprehensive nutrient processes in the soil such as fertilization, atmospheric deposition, manure application, plant uptake process, and the transformation processes. Therefore, AGCHEM modules afford the ability to evaluate the alternative management practice and model the interactions between nutrient species. However, our modeling results indicated that the inclusion of AGCHEM modules do not significantly improve the nutrient modeling performance but rather take much more time in model development. The nutrient algorithms selection for total maximum daily loads development depends on the data availability, required modeling accuracy, and available time for model development.


Asunto(s)
Algoritmos , Modelos Teóricos , Abastecimiento de Agua/análisis , Monitoreo del Ambiente/métodos , Geografía , Mississippi , Ríos
11.
Artículo en Inglés | MEDLINE | ID: mdl-17990165

RESUMEN

Several inland water bodies in the St. Louis Bay watershed have been identified as being potentially impaired due to low level of dissolved oxygen (DO). In order to calculate the total maximum daily loads (TMDL), a standard watershed model supported by U.S. Environmental Protection Agency, Hydrological Simulation Program Fortran (HSPF), was used to simulate water temperature, DO, and bio-chemical oxygen demand (BOD). Both point and non-point sources of BOD were included in watershed modeling. The developed model was calibrated at two time periods: 1978 to 1986 and 2000 to 2001 with simulated DO closely matched the observed data and captured the seasonal variations. The model represented the general trend and average condition of observed BOD. Water temperature and BOD decay are the major factors that affect DO simulation, whereas nutrient processes, including nitrification, denitrification, and phytoplankton cycle, have slight impacts. The calibrated water quality model provides a representative linkage between the sources of BOD and in-stream DO\BOD concentrations. The developed input parameters in this research could be extended to similar coastal watersheds for TMDL determination and Best Management Practice (BMP) evaluation.


Asunto(s)
Agua Dulce/química , Oxígeno/análisis , Simulación por Computador , Estaciones del Año
12.
Langmuir ; 22(10): 4498-503, 2006 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-16649755

RESUMEN

The preferential sorption of model compounds to calcium-exchanged montmorillonite surfaces was investigated using 1H high-resolution magic-angle spinning (HR-MAS) and liquid-state NMR. Synthetic mixtures, representing the major structural categories abundant in natural organic matter (NOM), and two soil extracts were sorbed to montmorillonite. The NMR spectra indicate that, of the organic components observable by 1H HR-MAS NMR, aliphatic components preferentially sorb to the clay surface, while carbohydrates and amino acids mainly remain in the supernatant. These results may help explain the highly aliphatic nature of organic matter associated with clay fractions in natural soils and sediments. Investigations using the synthetic mixtures demonstrate a specific interaction between the clay surface and the polar region in 1-palmitoyl-3-stearoyl-rac-glycerol. Similar observations were obtained with natural soil extracts. The results presented have important implications for understanding the role of organoclay complexes in natural processes, and provides preliminary evidence that HR-MAS NMR is a powerful analytical technique for the investigation of organoclay complex structure and conformation.


Asunto(s)
Silicatos de Aluminio/química , Bentonita/química , Compuestos Orgánicos/química , Arcilla , Mezclas Complejas/química , Diglicéridos/química , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Propiedades de Superficie
13.
Environ Sci Technol ; 37(2): 337-42, 2003 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-12564906

RESUMEN

Here we demonstrate the application of 3-D NMR spectroscopy to structural studies of humic substances, the most abundant of organic compounds on earth. The increased spectral dispersion provided by the additional dimension is proven to be highly advantageous in separating the overlapping signals observed in 2-D spectra. Assignments of the major aliphatic structures and selected aromatic moieties are given as examples. We find that in a forest soil fulvic acid the major aliphatic materials are likely derived from leaf cuticles and further demonstrate that lignin signatures can be identified among the aromatic species. Once identified from the 3-D spectra, these structures can be assigned using the partial information available in 2-D, and in some cases, in the 1-D spectra. These signals are demonstrated to be characteristic to given samples of natural organic matter, and the case is made for their use as indicators of terrestrial biomarkers in mixtures of compounds with unknown origins.


Asunto(s)
Monitoreo del Ambiente/métodos , Sustancias Húmicas/análisis , Espectroscopía de Resonancia Magnética/métodos , Benzopiranos/química , Biomarcadores/análisis , Sustancias Húmicas/química , Imagenología Tridimensional , Lignina/análisis , Lignina/química , Plantas/química , Suelo , Árboles
14.
Artículo en Inglés | MEDLINE | ID: mdl-11846278

RESUMEN

An adequate supply of Co in pasture is important to the health of grazing animals. Bio-availability of Co in soils is largely depended upon its distribution among solid-phase fractions. Distribution of cobalt in six arid-zone soils and its redistribution among the solid-phase fractions during long-term saturated paste incubation were studied. Cobalt was fractionated by a selective sequential dissolution procedure into six empirically defined fractions. Concentrations of total Co and Mn or Fe, and Co and Mn fractionation pattern were strongly correlated in the soils. During saturated incubation, Co in soils was redistributed mainly from the Mn oxide bound, and to some extent, Fe oxide bound and organic matter bound fractions into the carbonate bound fraction. During saturated incubation, significant correlations were found between concentrations of Co and Mn in the Mn oxide bound, Fe oxide bound and carbonate bound fractions. Also, significant correlations between concentrations of Co and Fe in the Fe oxide bound fraction were present. However, a negative correlation between concentrations of Co and Fe in the Mn oxide bound fraction was observed. The rates of redistribution of Co between these solid-phase components were initially high: major changes occurred in the first 3 days in the sandy soil and the first 18 days in the loessial soil. Afterwards, the rates of change slowed but changes in redistribution continued during the rest of the study period of one year.


Asunto(s)
Cobalto/química , Suelo , Adsorción , Animales , Disponibilidad Biológica , Bovinos , Cobalto/farmacocinética , Cinética , Metales/química , Compuestos Orgánicos , Plantas Comestibles/química , Agua
15.
Magn Reson Chem ; 42(1): 14-22, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14745812

RESUMEN

This paper describes procedures for the generation of 2D NMR databases containing spectra predicted from chemical structures. These databases allow flexible searching via chemical structure, substructure or similarity of structure as well as spectral features. In this paper we use the biopolymer lignin as an example. Lignin is an important and relatively recalcitrant structural biopolymer present in the majority of plant biomass. We demonstrate how an accurate 2D NMR database of approximately 600 2D spectra of lignin fragments can be easily constructed, in approximately 2 days, and then subsequently show how some of these fragments can be identified in soil extracts through the use of various search tools and pattern recognition techniques. We demonstrate that once identified in one sample, similar residues are easily determined in other soil extracts. In theory, such an approach can be used for the analysis of any organic mixtures.


Asunto(s)
Benzopiranos/química , Espectroscopía de Resonancia Magnética/métodos , Benzopiranos/aislamiento & purificación , Isótopos de Carbono , Bases de Datos como Asunto , Lignina/química , Estructura Molecular , Plantas/química , Protones , Árboles
16.
Analyst ; 129(12): 1216-22, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15565221

RESUMEN

Non-living natural organic matter (NOM) is ubiquitous in the oceans, atmosphere, sediments, and soils, and represents the most abundant organic carbon reserves on earth. However, a large proportion is considered to be "molecularly uncharacterized" because the inherent complexity of NOM is problematic when applying conventional analytical techniques. This manuscript presents initial applications of LC-NMR (1H) and LC-SPE-NMR (1H) to the studies of NOM isolated from water and soil. LC-NMR is applied to dissolved natural organic matter (DNOM) collected from freshwater environments, and both LC-NMR and LC-SPE-NMR are applied to an alkaline soil extract. The polar and complex nature of the DNOM samples limits conventional reversed phase separation, which can be partially overcome with the use of an ion pair reagent, although such an approach further complicates the NMR detection. LC-SPE-NMR of the soil alkaline extract was encouraging, and specific components in the mixture could be assigned. This work demonstrates that it is both possible to separate and concentrate specific components in NOM such that NMR detection is possible. As NMR information will be critical in unraveling the novel and/or complex structures in NOM this represents a key analytical hurdle in this area.


Asunto(s)
Compuestos Orgánicos/análisis , Animales , Fenómenos Químicos , Química , Cromatografía Liquida , Espectroscopía de Resonancia Magnética
17.
Naturwissenschaften ; 89(2): 84-8, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12046627

RESUMEN

Here we show, for the first time, evidence of the primary molecular structures in humic substances (HS), the most abundant naturally occurring organic molecules on Earth, and their associations as mixtures in terrestrial systems. Multi-dimensional nuclear magnetic resonance (NMR) experiments show us that the major molecular structural components in the mixtures operationally defined as HS are aliphatic acids, ethers, esters and alcohols; aromatic lignin derived fragments; polysaccharides and polypeptides. By means of diffusion ordered spectroscopy, distinct diffusion coefficients consistent with relatively low molecular weight molecules were observed for all the components in the mixtures, and saccharides were the largest single class of component present. Liquid chromatography NMR confirmed that HS components can be easily separated and nuclear Overhauser effect (NOE) enhancements support the finding that the components are of relatively low molecular weight

Asunto(s)
Sustancias Húmicas/metabolismo , Plantas/metabolismo , Animales , Bacterias/metabolismo , Ecosistema , Hongos/metabolismo
18.
Naturwissenschaften ; 89(11): 497-504, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12451451

RESUMEN

Heavy metals have been increasingly released into our environment. We present here, for the first time, the global industrial age production of Cd, Cu, Cr, Hg, Ni, Pb, and Zn, and their potential accumulation and environmental effects in the pedosphere. World soils have been seriously polluted by Pb and Cd and slightly by Zn. The potential industrial age anthropogenic Pb, Hg, and Cd inputs in the pedosphere are 9.6, 6.1, and 5.2 times those in the lithosphere, respectively. The potential anthropogenic heavy metal inputs in the pedosphere increased tremendously after the 1950s, especially for Cr and Ni. In 2000, the cumulative industrial age anthropogenic global production of Cd, Cr, Cu, Hg, Ni, Pb, and Zn was 1.1, 105, 451, 0.64, 36, 235, and 354 million tonnes, respectively. The global industrial age metal burdens per capita (in 2000) were 0.18, 17.3, 74.2, 0.10, 5.9, 38.6, and 58.2 kg for Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively. Acidification may increase the bioavailability and toxicity of heavy metals in the pedosphere. The improvement of industrial processing technology reducing the metal dispersion rate, the recycling of metal-containing outdated products, by-products and wastes, and the development of new substitute materials for heavy metals are possible strategies to minimize the effects of heavy metals on our environment.


Asunto(s)
Contaminación Ambiental , Industrias , Metales Pesados/efectos adversos , Disponibilidad Biológica , Contaminación Ambiental/prevención & control , Humanos , Concentración de Iones de Hidrógeno , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA