Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurooncol ; 164(1): 1-9, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37493865

RESUMEN

PURPOSE: Tumor Treating Fields (TTFields) therapy, an electric field-based cancer treatment, became FDA-approved for patients with newly diagnosed glioblastoma (GBM) in 2015 based on the randomized controlled EF-14 study. Subsequent approvals worldwide and increased adoption over time have raised the question of whether a consistent survival benefit has been observed in the real-world setting, and whether device usage has played a role. METHODS: We conducted a literature search to identify clinical studies evaluating overall survival (OS) in TTFields-treated patients. Comparative and single-cohort studies were analyzed. Survival curves were pooled using a distribution-free random-effects method. RESULTS: Among nine studies, seven (N = 1430 patients) compared the addition of TTFields therapy to standard of care (SOC) chemoradiotherapy versus SOC alone and were included in a pooled analysis for OS. Meta-analysis of comparative studies indicated a significant improvement in OS for patients receiving TTFields and SOC versus SOC alone (HR: 0.63; 95% CI 0.53-0.75; p < 0.001). Among real-world post-approval studies, the pooled median OS was 22.6 months (95% CI 17.6-41.2) for TTFields-treated patients, and 17.4 months (95% CI 14.4-21.6) for those not receiving TTFields. Rates of gross total resection were generally higher in the real-world setting, irrespective of TTFields use. Furthermore, for patients included in studies reporting data on device usage (N = 1015), an average usage rate of ≥ 75% was consistently associated with prolonged survival (p < 0.001). CONCLUSIONS: Meta-analysis of comparative TTFields studies suggests survival may be improved with the addition of TTFields to SOC for patients with newly diagnosed GBM.


Asunto(s)
Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Humanos , Glioblastoma/patología , Temozolomida/uso terapéutico , Terapia por Estimulación Eléctrica/métodos , Neoplasias Encefálicas/patología , Terapia Combinada
2.
J Neurooncol ; 163(1): 83-94, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37131108

RESUMEN

PURPOSE: Tumor Treating Fields (TTFields) are electric fields that disrupt cellular processes critical for cancer cell viability and tumor progression, ultimately leading to cell death. TTFields therapy is approved for treatment of newly-diagnosed glioblastoma (GBM) concurrent with maintenance temozolomide (TMZ). Recently, the benefit of TMZ in combination with lomustine (CCNU) was demonstrated in patients with O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. The addition of adjuvant TTFields to TMZ plus CCNU further improved patient outcomes, leading to a CE mark for this regimen. The current in vitro study aimed to elucidate the mechanism underlying the benefit of this treatment protocol. METHODS: Human GBM cell lines with different MGMT promoter methylation statuses were treated with TTFields, TMZ, and CCNU, and effectiveness was tested by cell count, apoptosis, colony formation, and DNA damage measurements. Expression levels of relevant DNA-repair proteins were examined by western blot analysis. RESULTS: TTFields concomitant with TMZ displayed an additive effect, irrespective of MGMT expression levels. TTFields concomitant with CCNU or with CCNU plus TMZ was additive in MGMT-expressing cells and synergistic in MGMT-non-expressing cells. TTFields downregulated the FA-BRCA pathway and increased DNA damage induced by the chemotherapy combination. CONCLUSIONS: The results support the clinical benefit demonstrated for TTFields concomitant with TMZ plus CCNU. Since the FA-BRCA pathway is required for repair of DNA cross-links induced by CCNU in the absence of MGMT, the synergy demonstrated in MGMT promoter methylated cells when TTFields and CCNU were co-applied may be attributed to the BRCAness state induced by TTFields.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Lomustina/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral
3.
Cancer Immunol Immunother ; 69(7): 1191-1204, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32144446

RESUMEN

Tumor-treating fields (TTFields) are alternating electric fields in a specific frequency range (100-300 kHz) delivered to the human body through transducer arrays. In this study, we evaluated whether TTFields-mediated cell death can elicit antitumoral immunity and hence would be effectively combined with anti-PD-1 therapy. We demonstrate that in TTFields-treated cancer cells, damage-associated molecular patterns including high-mobility group B1 and adenosine triphosphate are released and calreticulin is exposed on the cell surface. Moreover, we show that TTFields treatment promotes the engulfment of cancer cells by dendritic cells (DCs) and DCs maturation in vitro, as well as recruitment of immune cells in vivo. Additionally, our study demonstrates that the combination of TTFields with anti-PD-1 therapy results in a significant decline of tumor volume and increase in the percentage of tumor-infiltrating leukocytes in two tumor models. In orthotopic lung tumors, these infiltrating leukocytes, specifically macrophages and DCs, showed elevated expression of PD-L1. Compatibly, cytotoxic T-cells isolated from these tumors demonstrated increased production of IFN-γ. In colon cancer tumors, T-cells infiltration was significantly increased following long treatment duration with TTFields plus anti-PD-1. Collectively, our results suggest that TTFields therapy can induce anticancer immune response. Furthermore, we demonstrate robust efficacy of concomitant application of TTFields and anti-PD-1 therapy. These data suggest that integrating TTFields with anti-PD-1 therapy may further enhance antitumor immunity, hence achieve better tumor control.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Carcinoma Hepatocelular/terapia , Carcinoma Pulmonar de Lewis/terapia , Terapia por Estimulación Eléctrica/métodos , Muerte Celular Inmunogénica , Linfocitos Infiltrantes de Tumor/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Animales , Apoptosis , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/patología , Proliferación Celular , Terapia Combinada , Femenino , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Acta Neurochir (Wien) ; 157(8): 1359-67; discussion 1367, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26066535

RESUMEN

OBJECTIVES: The anatomy of the cavernous sinus is described controversially in a number of publications. In the present cadaveric study, the architecture of the dorsolateral wall of the cavernous sinus is studied microsurgically and histologically. MATERIALS AND METHODS: Twenty cadaveric skulls have been dissected through a classical surgical frontotemporal approach. The temporal skull base was flattened and anatomical landmarks like the meningo-orbital band, superior orbital fissure, foramina rotundum, ovale, and spinosum were identified. Lateral of the trigeminal foramina, the dura was cut and the periosteal dural layer was separated from the meningeal layer, identifying an interdural zone. The length and the extent of this zone were evaluated. The dural architecture of the interdural incision zone was examined histologically. RESULTS: In all specimens, two dural layers lateral of the trigeminal foramina could be separated. The identified interdural incision zone extended in a length of 3.8-6.4 cm in the antero-posterior direction. The zone could be followed medially to the superior orbital fissure for 5.3 mm and lateral of the foramen spinosum for 6.4 mm. The separation of the dural layers allowed the approach to the superior border of the cavernous sinus through this interdural incision zone. The histological analysis of the interdural incision zone showed clearly the existence of two dural layers. CONCLUSIONS: The architecture of the temporal-fossa-dura allows the microsurgical separation of two meningeal dural layers through a length of 5-6 cm next to the trigeminal foramina. Opening this interdural incision zone allowed exploring the superior border of the cavernous sinus.


Asunto(s)
Seno Cavernoso/cirugía , Duramadre/cirugía , Base del Cráneo/cirugía , Cadáver , Seno Cavernoso/anatomía & histología , Duramadre/anatomía & histología , Humanos , Microcirugia/métodos , Base del Cráneo/anatomía & histología
6.
Cancers (Basel) ; 14(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35740624

RESUMEN

Hepatocellular carcinoma (HCC), a highly aggressive liver cancer, is a leading cause of cancer-related death. Tumor Treating Fields (TTFields) are electric fields that exert antimitotic effects on cancerous cells. The aims of the current research were to test the efficacy of TTFields in HCC, explore the underlying mechanisms, and investigate the possible combination of TTFields with sorafenib, one of the few front-line treatments for patients with advanced HCC. HepG2 and Huh-7D12 human HCC cell lines were treated with TTFields at various frequencies to determine the optimal frequency eliciting maximal cell count reduction. Clonogenic, apoptotic effects, and autophagy induction were measured. The efficacy of TTFields alone and with concomitant sorafenib was tested in cell cultures and in an orthotopic N1S1 rat model. Tumor volume was examined at the beginning and following 5 days of treatment. At study cessation, tumors were weighed and examined by immunohistochemistry to assess autophagy and apoptosis. TTFields were found in vitro to exert maximal effect at 150 kHz, reducing cell count and colony formation, increasing apoptosis and autophagy, and augmenting the effects of sorafenib. In animals, TTFields concomitant with sorafenib reduced tumor weight and volume fold change, and increased cases of stable disease following treatment versus TTFields or sorafenib alone. While each treatment alone elevated levels of autophagy relative to control, TTFields concomitant with sorafenib induced a significant increase versus control in tumor ER stress and apoptosis levels, demonstrating increased stress under the multimodal treatment. Overall, TTFields treatment demonstrated efficacy and enhanced the effects of sorafenib for the treatment of HCC in vitro and in vivo, via a mechanism involving induction of autophagy.

7.
Front Oncol ; 11: 670809, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249709

RESUMEN

BACKGROUND: Tumor Treating Fields (TTFields) therapy is a non-invasive, loco-regional, anti-mitotic treatment modality that targets rapidly dividing cancerous cells, utilizing low intensity, alternating electric fields at cancer-cell-type specific frequencies. TTFields therapy is approved for the treatment of newly diagnosed and recurrent glioblastoma (GBM) in the US, Europe, Israel, Japan, and China. The favorable safety profile of TTFields in patients with GBM is partially attributed to the low rate of mitotic events in normal, quiescent brain cells. However, specific safety evaluations are warranted at locations with known high rates of cellular proliferation, such as the torso, which is a primary site of several of the most aggressive malignant tumors. METHODS: The safety of delivering TTFields to the torso of healthy rats at 150 or 200 kHz, which were previously identified as optimal frequencies for treating multiple torso cancers, was investigated. Throughout 2 weeks of TTFields application, animals underwent daily clinical examinations, and at treatment cessation blood samples and internal organs were examined. Computer simulations were performed to verify that the targeted internal organs of the torso were receiving TTFields at therapeutic intensities (≥ 1 V/cm root mean square, RMS). RESULTS: No treatment-related mortality was observed. Furthermore, no significant differences were observed between the TTFields-treated and control animals for all examined safety parameters: activity level, food and water intake, stools, motor neurological status, respiration, weight, complete blood count, blood biochemistry, and pathological findings of internal organs. TTFields intensities of 1 to 2.5 V/cm RMS were confirmed for internal organs within the target region. CONCLUSIONS: This research demonstrates the safety of therapeutic level TTFields at frequencies of 150 and 200 kHz when applied as monotherapy to the torso of healthy rats.

8.
Lung Cancer ; 160: 99-110, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34482104

RESUMEN

OBJECTIVES: Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields with antimitotic effects on cancerous cells. TTFields concomitant with pemetrexed and a platinum agent are approved in the US and EU as first line therapy for unresectable, locally advanced or metastatic malignant pleural mesothelioma (MPM). The goal of the current study was to characterize the mechanism of action of TTFields in MPM cell lines and animal models. METHODS: Human MPM cell lines MSTO-211H and NCI-H2052 were treated with TTFields to determine the frequency that elicits maximal cytotoxicity. The effect of TTFields on DNA damage and repair, and the cytotoxic effect of TTFields in combination with cisplatin and/or pemetrexed were examined. Efficacy of TTFields concomitant with cisplatin and pemetrexed was evaluated in orthotopic IL-45 and subcutaneous RN5 murine models. RESULTS: TTFields at a frequency of 150 kHz demonstrated the highest cytotoxicity to MPM cells. Application of 150 kHz TTFields resulted in increased formation of DNA double strand breaks, elevated expression of DNA damage induced cell cycle arrest proteins, and reduced expression of Fanconi Anemia (FA)-BRCA DNA repair pathway proteins. Co-treatment of TTFields with cisplatin or pemetrexed significantly increased treatment efficacy versus each modality alone, with additivity and synergy exhibited by the TTFields-pemetrexed and TTFields-cisplatin combinations, respectively. In animal models, tumor volume was significantly lower for the TTFields-cisplatin-pemetrexed combination compared to control, accompanied by increased DNA damage within the tumor. CONCLUSION: This research demonstrated that the efficacy of TTFields for the treatment of MPM is associated with reduced expression of FA-BRCA pathway proteins and increased DNA damage. This mechanism of action is consistent with the observed synergism for TTFields-cisplatin vs additivity for TTFields-pemetrexed, as cisplatin-induced DNA damage is repaired via the FA-BRCA pathway.


Asunto(s)
Anemia de Fanconi , Neoplasias Pulmonares , Mesotelioma Maligno , Animales , Cisplatino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Pemetrexed
9.
Clin Med Insights Oncol ; 13: 1179554918825449, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30728735

RESUMEN

BACKGROUND: Tumor treating fields (TTFields) are a non-invasive antimitotic therapy that delivers alternating electric fields via the Optune® system. The Phase III EF-14 trial in newly diagnosed glioblastoma multiforme (GBM) showed significantly improved progression-free, overall and long-term survival when Optune was used together with maintenance temozolomide (TMZ) compared with TMZ alone. Compliance (average monthly use) was associated with better clinical outcome. The first-generation Optune system weighed approximately 6 pounds (~2.7 kg). The second-generation redesigned Optune system weighs 2.7 pounds (~1.2 kg). We tested and compared GBM patient experience with the second-generation system versus the first-generation system. METHODS: Ten newly diagnosed and recurrent GBM patients in Germany (median age: 52.9 years [31-79]) were prospectively monitored over the first month of transitioning from the first-generation to the second-generation Optune system. Questionnaires using a numerical analog scale assessed feedback at baseline (first generation) and after 1 month of second-generation use. RESULTS: After transitioning to the second-generation system, compliance improved by more than 10% in four patients, was maintained in five patients and decreased by more than 10% in one patient. Following transition, eight out of nine patients reported a reduction in the triggering of malfunction alarms. Self-reported patient feedback showed improved handling and portability (weight, mobility) of the second- versus the first-generation Optune system. CONCLUSIONS: This patient user survey suggests that patient satisfaction with the second-generation Optune system is improved versus the first-generation system. Improved features of the new system help patients achieve and maintain a higher rate of treatment compliance.

10.
Cell Death Dis ; 9(11): 1074, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341282

RESUMEN

Tumor Treating Fields (TTFields), an approved treatment modality for glioblastoma, are delivered via non-invasive application of low-intensity, intermediate-frequency, alternating electric fields. TTFields application leads to abnormal mitosis, aneuploidy, and increased cell granularity, which are often associated with enhancement of autophagy. In this work, we evaluated whether TTFields effected the regulation of autophagy in glioma cells. We found that autophagy is upregulated in glioma cells treated with TTFields as demonstrated by immunoblot analysis of the lipidated microtubule-associated protein light chain 3 (LC3-II). Fluorescence and transmission electron microscopy demonstrated the presence of LC3 puncta and typical autophagosome-like structures in TTFields-treated cells. Utilizing time-lapse microscopy, we found that the significant increase in the formation of LC3 puncta was specific to cells that divided during TTFields application. Evaluation of selected cell stress parameters revealed an increase in the expression of the endoplasmic reticulum (ER) stress marker GRP78 and decreased intracellular ATP levels, both of which are indicative of increased proteotoxic stress. Pathway analysis demonstrated that TTFields-induced upregulation of autophagy is dependent on AMP-activated protein kinase (AMPK) activation. Depletion of AMPK or autophagy-related protein 7 (ATG7) inhibited the upregulation of autophagy in response to TTFields, as well as sensitized cells to the treatment, suggesting that cancer cells utilize autophagy as a resistance mechanism to TTFields. Combining TTFields with the autophagy inhibitor chloroquine (CQ) resulted in a significant dose-dependent reduction in cell growth compared with either TTFields or CQ alone. These results suggest that dividing cells upregulate autophagy in response to aneuploidy and ER stress induced by TTFields, and that AMPK serves as a key regulator of this process.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Neoplasias Encefálicas/patología , Estimulación Eléctrica/métodos , Glioblastoma/patología , Regulación hacia Arriba , Adenosina Trifosfato/metabolismo , Aneuploidia , Animales , Autofagosomas/metabolismo , Proteína 7 Relacionada con la Autofagia/antagonistas & inhibidores , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Supervivencia Celular , Terapia por Estimulación Eléctrica , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Glioblastoma/terapia , Proteínas de Choque Térmico/metabolismo , Humanos , Lisosomas/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Ratas , Factor A de Crecimiento Endotelial Vascular
11.
Clin Pract ; 5(3): 781, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26664716

RESUMEN

Atlantoaxial dislocation in children is a very rare condition. We present the case of a dislocation happened during a break-dance maneuver. The purpose of this report is describing dangers of break-dancing and discussing the treatment we chose. The patient was followed up until 12 months after surgery. Magnetic resonance imaging and computed tomography of the cervical spine were evaluated. Translaminar fixation of C1/C2 had been performed after manual reposition under X-ray illumination. After a 12-month follow-up, the patient shows a stable condition without neurological dysfunction. He is not allowed to perform any extreme sports.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA