Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 615(7950): 143-150, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36630998

RESUMEN

The SARS-CoV-2 Omicron variant is more immune evasive and less virulent than other major viral variants that have so far been recognized1-12. The Omicron spike (S) protein, which has an unusually large number of mutations, is considered to be the main driver of these phenotypes. Here we generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron (BA.1 lineage) in the backbone of an ancestral SARS-CoV-2 isolate, and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escaped vaccine-induced humoral immunity, mainly owing to mutations in the receptor-binding motif; however, unlike naturally occurring Omicron, it efficiently replicated in cell lines and primary-like distal lung cells. Similarly, in K18-hACE2 mice, although virus bearing Omicron S caused less severe disease than the ancestral virus, its virulence was not attenuated to the level of Omicron. Further investigation showed that mutating non-structural protein 6 (nsp6) in addition to the S protein was sufficient to recapitulate the attenuated phenotype of Omicron. This indicates that although the vaccine escape of Omicron is driven by mutations in S, the pathogenicity of Omicron is determined by mutations both in and outside of the S protein.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Factores de Virulencia , Virulencia , Animales , Ratones , Línea Celular , Evasión Inmune , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Humanos , Vacunas contra la COVID-19/inmunología , Pulmón/citología , Pulmón/virología , Replicación Viral , Mutación
2.
Nucleic Acids Res ; 52(10): 5975-5986, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38442273

RESUMEN

Coronaviruses are a diverse subfamily of viruses containing pathogens of humans and animals. This subfamily of viruses replicates their RNA genomes using a core polymerase complex composed of viral non-structural proteins: nsp7, nsp8 and nsp12. Most of our understanding of coronavirus molecular biology comes from betacoronaviruses like SARS-CoV and SARS-CoV-2, the latter of which is the causative agent of COVID-19. In contrast, members of the alphacoronavirus genus are relatively understudied despite their importance in human and animal health. Here we have used cryo-electron microscopy to determine structures of the alphacoronavirus porcine epidemic diarrhea virus (PEDV) core polymerase complex bound to RNA. One structure shows an unexpected nsp8 stoichiometry despite remaining bound to RNA. Biochemical analysis shows that the N-terminal extension of one nsp8 is not required for in vitro RNA synthesis for alpha- and betacoronaviruses. Our work demonstrates the importance of studying diverse coronaviruses in revealing aspects of coronavirus replication and identifying areas of conservation to be targeted by antiviral drugs.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus , Modelos Moleculares , Virus de la Diarrea Epidémica Porcina , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Microscopía por Crioelectrón , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/enzimología , Estructura Terciaria de Proteína , ARN Viral/metabolismo , ARN Viral/genética , ARN Viral/química , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Replicación Viral/genética , Animales
3.
Nucleic Acids Res ; 51(1): 315-336, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36546762

RESUMEN

Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Ribonucleótidos , Humanos , Antivirales/farmacología , Exorribonucleasas/metabolismo , Ribonucleótidos/química , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética , Diseño de Fármacos
4.
Nature ; 531(7592): 118-21, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26935699

RESUMEN

HKU1 is a human betacoronavirus that causes mild yet prevalent respiratory disease, and is related to the zoonotic SARS and MERS betacoronaviruses, which have high fatality rates and pandemic potential. Cell tropism and host range is determined in part by the coronavirus spike (S) protein, which binds cellular receptors and mediates membrane fusion. As the largest known class I fusion protein, its size and extensive glycosylation have hindered structural studies of the full ectodomain, thus preventing a molecular understanding of its function and limiting development of effective interventions. Here we present the 4.0 Å resolution structure of the trimeric HKU1 S protein determined using single-particle cryo-electron microscopy. In the pre-fusion conformation, the receptor-binding subunits, S1, rest above the fusion-mediating subunits, S2, preventing their conformational rearrangement. Surprisingly, the S1 C-terminal domains are interdigitated and form extensive quaternary interactions that occlude surfaces known in other coronaviruses to bind protein receptors. These features, along with the location of the two protease sites known to be important for coronavirus entry, provide a structural basis to support a model of membrane fusion mediated by progressive S protein destabilization through receptor binding and proteolytic cleavage. These studies should also serve as a foundation for the structure-based design of betacoronavirus vaccine immunogens.


Asunto(s)
Coronavirus/química , Coronavirus/ultraestructura , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Línea Celular , Microscopía por Crioelectrón , Humanos , Fusión de Membrana , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteolisis , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunas Virales/química , Vacunas Virales/inmunología , Internalización del Virus
5.
J Biol Chem ; 295(15): 4780-4781, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277065

RESUMEN

The nucleotide analogue remdesivir is an investigational drug for the treatment of human coronavirus infection. Remdesivir is a phosphoramidate prodrug and is known to target viral RNA-dependent RNA polymerases. In this issue, Gordon et al. identify that remdesivir acts as a delayed RNA chain terminator for MERS-CoV polymerase complexes.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus/efectos de los fármacos , Coronavirus/enzimología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Adenosina Monofosfato/farmacología , Alanina/farmacología , Animales , Coronavirus/fisiología , Infecciones por Coronavirus/virología , Exonucleasas , Humanos , Pandemias , Replicación Viral/efectos de los fármacos
6.
J Proteome Res ; 19(11): 4690-4697, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32692185

RESUMEN

SARS-CoV-2 is responsible for the current COVID-19 pandemic. On the basis of our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously demonstrated that three nucleotide analogues (the triphosphates of Sofosbuvir, Alovudine, and AZT) inhibit the SARS-CoV RNA-dependent RNA polymerase (RdRp). We also demonstrated that a library of additional nucleotide analogues terminate RNA synthesis catalyzed by the SARS-CoV-2 RdRp, a well-established drug target for COVID-19. Here, we used polymerase extension experiments to demonstrate that the active triphosphate form of Sofosbuvir (an FDA-approved hepatitis C drug) is incorporated by SARS-CoV-2 RdRp and blocks further incorporation. Using the molecular insight gained from the previous studies, we selected the active triphosphate forms of six other antiviral agents, Alovudine, Tenofovir alafenamide, AZT, Abacavir, Lamivudine, and Emtricitabine, for evaluation as inhibitors of the SARS-CoV-2 RdRp and demonstrated the ability of these viral polymerase inhibitors to be incorporated by SARS-CoV-2 RdRp, where they terminate further polymerase extension with varying efficiency. These results provide a molecular basis for inhibition of the SARS-CoV-2 RdRp by these nucleotide analogues. If sufficient efficacy of some of these FDA-approved drugs in inhibiting viral replication in cell culture is established, they may be explored as potential COVID-19 therapeutics.


Asunto(s)
Antivirales , Betacoronavirus , ARN Polimerasa Dependiente del ARN , Proteínas no Estructurales Virales , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Betacoronavirus/enzimología , Betacoronavirus/genética , COVID-19 , Infecciones por Coronavirus/virología , Didesoxinucleósidos/química , Didesoxinucleósidos/metabolismo , Didesoxinucleósidos/farmacología , Humanos , Pandemias , Neumonía Viral/virología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2 , Sofosbuvir/química , Sofosbuvir/metabolismo , Sofosbuvir/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(35): E7348-E7357, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28807998

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus that since its emergence in 2012 has caused outbreaks in human populations with case-fatality rates of ∼36%. As in other coronaviruses, the spike (S) glycoprotein of MERS-CoV mediates receptor recognition and membrane fusion and is the primary target of the humoral immune response during infection. Here we use structure-based design to develop a generalizable strategy for retaining coronavirus S proteins in the antigenically optimal prefusion conformation and demonstrate that our engineered immunogen is able to elicit high neutralizing antibody titers against MERS-CoV. We also determined high-resolution structures of the trimeric MERS-CoV S ectodomain in complex with G4, a stem-directed neutralizing antibody. The structures reveal that G4 recognizes a glycosylated loop that is variable among coronaviruses and they define four conformational states of the trimer wherein each receptor-binding domain is either tightly packed at the membrane-distal apex or rotated into a receptor-accessible conformation. Our studies suggest a potential mechanism for fusion initiation through sequential receptor-binding events and provide a foundation for the structure-based design of coronavirus vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Coronaviridae/inmunología , Infecciones por Coronavirus/virología , Cristalografía por Rayos X/métodos , Humanos , Inmunidad Humoral/inmunología , Inmunoglobulina G/metabolismo , Ratones Endogámicos BALB C , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Unión Proteica , Conformación Proteica , Receptores Virales/metabolismo , Relación Estructura-Actividad , Vacunación , Vacunas Virales/inmunología
8.
J Virol ; 91(2)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27847355

RESUMEN

Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (genera Marburgvirus and Ebolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif. This domain has been shown to be essential for RNA polymerase function. Here we present crystal structures of the MARV VP35 oligomerization domain. These structures and accompanying biophysical characterization suggest that MARV VP35 is a trimer. In contrast, EBOV VP35 is likely a tetramer in solution. Differences in the oligomeric state of this protein may explain mechanistic differences in replication and immune evasion observed for MARV and EBOV. IMPORTANCE: Marburg virus can cause severe disease, with up to 90% human lethality. Its genome is concise, only producing seven proteins. One of the proteins, VP35, is essential for replication of the viral genome and for evasion of host immune responses. VP35 oligomerizes (self-assembles) in order to function, yet the structure by which it assembles has not been visualized. Here we present two crystal structures of this oligomerization domain. In both structures, three copies of VP35 twist about each other to form a coiled coil. This trimeric assembly is in contrast to tetrameric predictions for VP35 of Ebola virus and to known structures of homologous proteins in the measles, mumps, and Nipah viruses. Distinct oligomeric states of the Marburg and Ebola virus VP35 proteins may explain differences between them in polymerase function and immune evasion. These findings may provide a more accurate understanding of the mechanisms governing VP35's functions and inform the design of therapeutics.


Asunto(s)
Marburgvirus/metabolismo , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Reguladoras y Accesorias Virales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Estabilidad Proteica , Termodinámica , Proteínas Reguladoras y Accesorias Virales/metabolismo
9.
PLoS Pathog ; 12(10): e1005937, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27755595

RESUMEN

Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.


Asunto(s)
Ebolavirus/genética , Nucleoproteínas/química , Nucleoproteínas/genética , ARN Viral/biosíntesis , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas Virales/química , Proteínas Virales/genética , Western Blotting , Ebolavirus/química , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Genética/fisiología , Replicación Viral/fisiología
10.
Curr Top Microbiol Immunol ; 411: 381-417, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28795188

RESUMEN

In this chapter, we describe what is known thus far about the structures and functions of the handful of proteins encoded by filovirus genomes. Amongst the fascinating findings of the last decade is the plurality of functions and structures that these polypeptides can adopt. Many of the encoded proteins can play multiple, distinct roles in the virus life cycle, although the mechanisms by which these functions are determined and controlled remain mostly veiled. Further, some filovirus proteins are multistructural: adopting different oligomeric assemblies and sometimes, different tertiary structures to achieve their separate, and equally essential functions. Structures, and the functions they dictate, are described for components of the nucleocapsid, the matrix, and the surface and secreted glycoproteins.


Asunto(s)
Filoviridae/química , Filoviridae/metabolismo , Nucleocápside/química , Nucleocápside/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-23295483

RESUMEN

In jawless vertebrates, variable lymphocyte receptors (VLRs) play a crucial role in the recognition of antigens as part of the adaptive immune system. Leucine-rich repeat (LRR) modules and the highly variable insert (HVI) of VLRs contribute to the specificity and diversity of antigen recognition. VLR2913, the antigen of which is not known, contains the same HVI amino-acid sequence as that of VLR RBC36, which recognizes the H-trisaccharide from human blood type O erythrocytes. Since the HVI sequence is rarely identical among all known VLRs, identification of the antigen for VLR2913 and the main contributing factors for antigen recognition based on a comparison of VLR2913 and VLR RBC36 has been attempted. To initiate and facilitate this structural approach, the ectodomain of VLR2913 was fused with the N-terminal domain of internalin B (InlB-VLR2913-ECD). Three amino-acid residues on the concave surface of the LRR modules of InlB-VLR2913-ECD were mutated, considering important residues for hydrogen bonds in the recognition of H-trisaccharide by VLR RBC36. InlB-VLR2913-ECD was overexpressed in Escherichia coli and was crystallized at 295 K using the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 2.04 Šresolution and could be indexed in the tetragonal space group P4(1)2(1)2 (or P4(3)2(1)2), with unit-cell parameters a = 91.12, b = 91.12, c = 62.87 Å. Assuming that one monomer molecule was present in the crystallographic asymmetric unit, the calculated Matthews coefficient (V(M)) was 2.75 Å(3) Da(-1) and the solvent content was 55.2%. Structural determination of InlB-VLR2913-ECD by molecular replacement is in progress.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de la Membrana/genética , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Enlace de Hidrógeno , Proteínas Repetidas Ricas en Leucina , Linfocitos/inmunología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mutación , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trisacáridos/metabolismo , Vertebrados
12.
bioRxiv ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993498

RESUMEN

Coronaviruses are a diverse subfamily of viruses containing pathogens of humans and animals. This subfamily of viruses replicates their RNA genomes using a core polymerase complex composed of viral non-structural proteins: nsp7, nsp8 and nsp12. Most of our understanding of coronavirus molecular biology comes from the betacoronaviruses like SARS-CoV and SARS-CoV-2, the latter of which is the causative agent of COVID-19. In contrast, members of the alphacoronavirus genus are relatively understudied despite their importance in human and animal health. Here we have used cryo-electron microscopy to determine the structure of the alphacoronavirus porcine epidemic diarrhea virus (PEDV) core polymerase complex bound to RNA. Our structure shows an unexpected nsp8 stoichiometry in comparison to other published coronavirus polymerase structures. Biochemical analysis shows that the N-terminal extension of one nsp8 is not required for in vitro RNA synthesis for alpha and betacoronaviruses as previously hypothesized. Our work shows the importance of studying diverse coronaviruses to reveal aspects of coronavirus replication while also identifying areas of conservation to be targeted by antiviral drugs.

13.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36263066

RESUMEN

The recently identified, globally predominant SARS-CoV-2 Omicron variant (BA.1) is highly transmissible, even in fully vaccinated individuals, and causes attenuated disease compared with other major viral variants recognized to date. The Omicron spike (S) protein, with an unusually large number of mutations, is considered the major driver of these phenotypes. We generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron in the backbone of an ancestral SARS-CoV-2 isolate and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escapes vaccine-induced humoral immunity, mainly due to mutations in the receptor binding motif (RBM), yet unlike naturally occurring Omicron, efficiently replicates in cell lines and primary-like distal lung cells. In K18-hACE2 mice, while Omicron causes mild, non-fatal infection, the Omicron S-carrying virus inflicts severe disease with a mortality rate of 80%. This indicates that while the vaccine escape of Omicron is defined by mutations in S, major determinants of viral pathogenicity reside outside of S.

14.
J Biol Chem ; 286(19): 17351-8, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21454495

RESUMEN

In the postantibiotic era, available treatment options for severe bacterial infections caused by methicillin-resistant Staphylococcus aureus have become limited. Therefore, new and innovative approaches are needed to combat such life-threatening infections. Virulence factor expression in S. aureus is regulated in a cell density-dependent manner using "quorum sensing," which involves generation and secretion of autoinducing peptides (AIPs) into the surrounding environment to activate a bacterial sensor kinase at a particular threshold concentration. Mouse monoclonal antibody AP4-24H11 was shown previously to blunt quorum sensing-mediated changes in gene expression in vitro and protect mice from a lethal dose of S. aureus by sequestering the AIP signal. We have elucidated the crystal structure of the AP4-24H11 Fab in complex with AIP-4 at 2.5 Å resolution to determine its mechanism of ligand recognition. A key Glu(H95) provides much of the binding specificity through formation of hydrogen bonds with each of the four amide nitrogens in the AIP-4 macrocyclic ring. Importantly, these structural data give clues as to the interactions between the cognate staphylococcal AIP receptors AgrC and the AIPs, as AP4-24H11·AIP-4 binding recapitulates features that have been proposed for AgrC-AIP recognition. Additionally, these structural insights may enable the engineering of AIP cross-reactive antibodies or quorum quenching vaccines for use in active or passive immunotherapy for prevention or treatment of S. aureus infections.


Asunto(s)
Ligandos , Percepción de Quorum/genética , Staphylococcus aureus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X/métodos , Regulación Bacteriana de la Expresión Génica , Fragmentos de Inmunoglobulinas/química , Inmunoglobulina G/química , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Péptidos/química , Unión Proteica , Mapeo de Interacción de Proteínas , Percepción de Quorum/inmunología , Transducción de Señal
15.
Sci Adv ; 8(3): eabk2039, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35044813

RESUMEN

One of the rate-limiting steps in analyzing immune responses to vaccines or infections is the isolation and characterization of monoclonal antibodies. Here, we present a hybrid structural and bioinformatic approach to directly assign the heavy and light chains, identify complementarity-determining regions, and discover sequences from cryoEM density maps of serum-derived polyclonal antibodies bound to an antigen. When combined with next-generation sequencing of immune repertoires, we were able to specifically identify clonal family members, synthesize the monoclonal antibodies, and confirm that they interact with the antigen in a manner equivalent to the corresponding polyclonal antibodies. This structure-based approach for identification of monoclonal antibodies from polyclonal sera opens new avenues for analysis of immune responses and iterative vaccine design.

16.
Commun Chem ; 42021.
Artículo en Inglés | MEDLINE | ID: mdl-34189273

RESUMEN

Coronaviruses, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), encode a nucleotidyl transferase in the N-terminal (NiRAN) domain of the nonstructural protein (nsp) 12 protein within the RNA dependent RNA polymerase. Here we show the detection of guanosine monophosphate (GMP) and uridine monophosphate-modified amino acids in nidovirus proteins using heavy isotope-assisted mass spectrometry (MS) and MS/MS peptide sequencing. We identified lysine-143 in the equine arteritis virus (EAV) protein, nsp7, as a primary site of in vitro GMP attachment via a phosphoramide bond. In SARS-CoV-2 replicase proteins, we demonstrate nsp12-mediated nucleotidylation of nsp7 lysine-2. Our results demonstrate new strategies for detecting GMP-peptide linkages that can be adapted for higher throughput screening using mass spectrometric technologies. These data are expected to be important for a rapid and timely characterization of a new enzymatic activity in SARS-CoV-2 that may be an attractive drug target aimed at limiting viral replication in infected patients.

17.
Commun Chem ; 4(1): 41, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36697572

RESUMEN

Coronaviruses, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), encode a nucleotidyl transferase in the N-terminal (NiRAN) domain of the nonstructural protein (nsp) 12 protein within the RNA dependent RNA polymerase. Here we show the detection of guanosine monophosphate (GMP) and uridine monophosphate-modified amino acids in nidovirus proteins using heavy isotope-assisted mass spectrometry (MS) and MS/MS peptide sequencing. We identified lysine-143 in the equine arteritis virus (EAV) protein, nsp7, as a primary site of in vitro GMP attachment via a phosphoramide bond. In SARS-CoV-2 replicase proteins, we demonstrate nsp12-mediated nucleotidylation of nsp7 lysine-2. Our results demonstrate new strategies for detecting GMP-peptide linkages that can be adapted for higher throughput screening using mass spectrometric technologies. These data are expected to be important for a rapid and timely characterization of a new enzymatic activity in SARS-CoV-2 that may be an attractive drug target aimed at limiting viral replication in infected patients.

18.
Structure ; 29(4): 385-392.e5, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33378641

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus responsible for significant morbidity and mortality in pigs. A key determinant of viral tropism and entry, the PEDV spike protein is a key target for the host antibody response and a good candidate for a protein-based vaccine immunogen. We used electron microscopy to evaluate the PEDV spike structure, as well as pig polyclonal antibody responses to viral infection. The structure of the PEDV spike reveals a configuration similar to that of HuCoV-NL63. Several PEDV protein-protein interfaces are mediated by non-protein components, including a glycan at Asn264 and two bound palmitoleic acid molecules. The polyclonal antibody response to PEDV infection shows a dominance of epitopes in the S1 region. This structural and immune characterization provides insights into coronavirus spike stability determinants and explores the immune landscape of viral spike proteins.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Infecciones por Coronavirus/inmunología , Epítopos/inmunología , Virus de la Diarrea Epidémica Porcina/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Animales , Línea Celular , Microscopía por Crioelectrón , Ácidos Grasos Monoinsaturados/química , Modelos Moleculares , Conformación Molecular , Polisacáridos/química , Virus de la Diarrea Epidémica Porcina/química , Virus de la Diarrea Epidémica Porcina/metabolismo , Unión Proteica , Células Sf9 , Glicoproteína de la Espiga del Coronavirus/inmunología , Porcinos
19.
Cell Rep ; 36(9): 109650, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34433083

RESUMEN

Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We use a high-throughput magnetic-tweezers approach to develop a mechanochemical description of this core polymerase. The core polymerase exists in at least three catalytically distinct conformations, one being kinetically consistent with incorporation of incorrect nucleotides. We provide evidence that the RNA-dependent RNA polymerase (RdRp) uses a thermal ratchet instead of a power stroke to transition from the pre- to post-translocated state. Ultra-stable magnetic tweezers enable the direct observation of coronavirus polymerase deep and long-lived backtracking that is strongly stimulated by secondary structures in the template. The framework we present here elucidates one of the most important structure-dynamics-function relationships in human health today and will form the grounds for understanding the regulation of this complex.


Asunto(s)
COVID-19/virología , ARN Polimerasa Dependiente de ARN de Coronavirus/fisiología , Nucleótidos/metabolismo , ARN Viral/biosíntesis , SARS-CoV-2/fisiología , ARN Polimerasa Dependiente de ARN de Coronavirus/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , Conformación Molecular , Nucleótidos/química , ARN Viral/química , Imagen Individual de Molécula , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/fisiología
20.
bioRxiv ; 2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33791706

RESUMEN

Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We have used a high-throughput magnetic-tweezers approach to develop a mechanochemical description of this core polymerase. The core polymerase exists in at least three catalytically distinct conformations, one being kinetically consistent with incorporation of incorrect nucleotides. We provide the first evidence that an RdRp uses a thermal ratchet instead of a power stroke to transition from the pre- to post-translocated state. Ultra-stable magnetic tweezers enables the direct observation of coronavirus polymerase deep and long-lived backtrack that are strongly stimulated by secondary structure in the template. The framework presented here elucidates one of the most important structure-dynamics-function relationships in human health today, and will form the grounds for understanding the regulation of this complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA