Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
JID Innov ; 4(2): 100255, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38328594

RESUMEN

The immune checkpoint ligand PD-L1 has emerged as a molecular target for skin cancer therapy and might also hold promise for preventive intervention targeting solar UV light-induced skin damage. In this study, we have explored the role of PD-L1 in acute keratinocytic photodamage testing the effects of small-molecule pharmacological inhibition. Epidermal PD-L1 upregulation in response to chronic photodamage was established using immunohistochemical and proteomic analyses of a human skin cohort, consistent with earlier observations that PD-L1 is upregulated in cutaneous squamous cell carcinoma. Topical application of the small-molecule PD-L1 inhibitor BMS-202 significantly attenuated UV-induced activator protein-1 transcriptional activity in SKH-1 bioluminescent reporter mouse skin, also confirmed in human HaCaT reporter keratinocytes. RT-qPCR analysis revealed that BMS-202 antagonized UV induction of inflammatory gene expression. Likewise, UV-induced cleavage of procaspase-3, a hallmark of acute skin photodamage, was attenuated by topical BMS-202. NanoString nCounter transcriptomic analysis confirmed downregulation of cutaneous innate immunity- and inflammation-related responses, together with upregulation of immune response pathway gene expression. Further mechanistic analysis confirmed that BMS-202 antagonizes UV-induced PD-L1 expression both at the mRNA and protein levels in SKH-1 epidermis. These data suggest that topical pharmacological PD-L1 antagonism using BMS-202 shows promise for skin protection against photodamage.

2.
Photochem Photobiol ; 97(4): 778-784, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33615483

RESUMEN

Overexpression of PD-L1 (CD274) on tumor cells may represent a hallmark of immune evasion, and overexpression has been documented in several tumors including cutaneous squamous cell carcinoma (cSCC). While PD-L1/PD-1 activity in the skin has been primarily described in inflammatory models, our goal was to examine PD-L1 expression in human keratinocytes exposed to UV irradiation. We assessed PD-L1 expression in human sun-protected (SP) and sun-damaged (SD) skin, actinic keratosis (AK), and cSCC using IHC and protein microarray. Both methods found low baseline levels of PD-L1 in SP and SD skin and significantly increased expression in cSCC. Next, we examined PD-L1 expression in acute models of UV exposure. In human SP skin exposed to 2-3 MED of UV (n = 20), epidermal PD-L1 was induced in 70% of subjects after 24 h (P = 0.0001). SKH-1 mice exposed to acute UV also showed significant epidermal PD-L1 induction at 16, 24 and 48 h. A time- and dose-dependent induction of PD-L1 was confirmed in cultured human keratinocytes after UV, which was markedly reduced in the presence of MEK/ERK, JNK or STAT3 inhibitors. These findings suggest that UV induces upregulation of PD-L1 through established, pharmacologically targetable stress-signaling pathways in keratinocytes.


Asunto(s)
Piel , Animales , Antígeno B7-H1/genética , Carcinoma de Células Escamosas , Humanos , Ratones , Neoplasias Cutáneas , Rayos Ultravioleta/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA