Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Circ Res ; 135(2): 280-297, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38847080

RESUMEN

BACKGROUND: Heart failure (HF) is one of the leading causes of mortality worldwide. Extracellular vesicles, including small extracellular vesicles or exosomes, and their molecular cargo are known to modulate cell-to-cell communication during multiple cardiac diseases. However, the role of systemic extracellular vesicle biogenesis inhibition in HF models is not well documented and remains unclear. METHODS: We investigated the role of circulating exosomes during cardiac dysfunction and remodeling in a mouse transverse aortic constriction (TAC) model of HF. Importantly, we investigate the efficacy of tipifarnib, a recently identified exosome biogenesis inhibitor that targets the critical proteins (Rab27a [Ras associated binding protein 27a], nSMase2 [neutral sphingomyelinase 2], and Alix [ALG-2-interacting protein X]) involved in exosome biogenesis for this mouse model of HF. In this study, 10-week-old male mice underwent TAC surgery were randomly assigned to groups with and without tipifarnib treatment (10 mg/kg 3 times/wk) and monitored for 8 weeks, and a comprehensive assessment was conducted through performed echocardiographic, histological, and biochemical studies. RESULTS: TAC significantly elevated circulating plasma exosomes and markedly increased cardiac left ventricular dysfunction, cardiac hypertrophy, and fibrosis. Furthermore, injection of plasma exosomes from TAC mice induced left ventricular dysfunction and cardiomyocyte hypertrophy in uninjured mice without TAC. On the contrary, treatment of tipifarnib in TAC mice reduced circulating exosomes to baseline and remarkably improved left ventricular functions, hypertrophy, and fibrosis. Tipifarnib treatment also drastically altered the miRNA profile of circulating post-TAC exosomes, including miR 331-5p, which was highly downregulated both in TAC circulating exosomes and in TAC cardiac tissue. Mechanistically, miR 331-5p is crucial for inhibiting the fibroblast-to-myofibroblast transition by targeting HOXC8, a critical regulator of fibrosis. Tipifarnib treatment in TAC mice upregulated the expression of miR 331-5p that acts as a potent repressor for one of the fibrotic mechanisms mediated by HOXC8. CONCLUSIONS: Our study underscores the pathological role of exosomes in HF and fibrosis in response to pressure overload. Tipifarnib-mediated inhibition of exosome biogenesis and cargo sorting may serve as a viable strategy to prevent progressive cardiac remodeling in HF.


Asunto(s)
Vesículas Extracelulares , Insuficiencia Cardíaca , Quinolonas , Animales , Masculino , Ratones , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Modelos Animales de Enfermedad , Vesículas Extracelulares/efectos de los fármacos , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/prevención & control , Quinolonas/farmacología , Quinolonas/uso terapéutico , Distribución Aleatoria , Regulación hacia Arriba/efectos de los fármacos , MicroARNs , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo
2.
Am J Respir Cell Mol Biol ; 70(4): 259-282, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38117249

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease caused by an aberrant repair of injured alveolar epithelial cells. The maintenance of the alveolar epithelium and its regeneration after the damage is fueled by alveolar type II (ATII) cells. Injured cells release exosomes containing microRNAs (miRNAs), which can alter the recipient cells' function. Lung tissue, ATII cells, fibroblasts, plasma, and exosomes were obtained from naive patients with IPF, patients with IPF taking pirfenidone or nintedanib, and control organ donors. miRNA expression was analyzed to study their impact on exosome-mediated effects in IPF. High miR-143-5p and miR-342-5p levels were detected in ATII cells, lung tissue, plasma, and exosomes in naive patients with IPF. Decreased FASN (fatty acid synthase) and ACSL-4 (acyl-CoA-synthetase long-chain family member 4) expression was found in ATII cells. miR-143-5p and miR-342-5p overexpression or ATII cell treatment with IPF-derived exosomes containing these miRNAs lowered FASN and ACSL-4 levels. Also, this contributed to ATII cell injury and senescence. However, exosomes isolated from patients with IPF taking nintedanib or pirfenidone increased FASN expression in ATII cells compared with naive patients with IPF. Furthermore, fibroblast treatment with exosomes obtained from naive patients with IPF increased SMAD3, CTGF, COL3A1, and TGFß1 expression. Our results suggest that IPF-derived exosomes containing miR-143-5p and miR-342-5p inhibited the de novo fatty acid synthesis pathway in ATII cells. They also induced the profibrotic response in fibroblasts. Pirfenidone and nintedanib improved ATII cell function and inhibited fibrogenesis. This study highlights the importance of exosomes in IPF pathophysiology.


Asunto(s)
Exosomas , Fibrosis Pulmonar Idiopática , MicroARNs , Humanos , Células Epiteliales Alveolares/metabolismo , Exosomas/metabolismo , Ácido Graso Sintasas/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
3.
Cerebellum ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760634

RESUMEN

The hereditary cerebellar ataxias (HCAs) are rare, progressive neurologic disorders caused by variants in many different genes. Inheritance may follow autosomal dominant, autosomal recessive, X-linked or mitochondrial patterns. The list of genes associated with adult-onset cerebellar ataxia is continuously growing, with several new genes discovered in the last few years. This includes short-tandem repeat (STR) expansions in RFC1, causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), FGF14-GAA causing spinocerebellar ataxia type 27B (SCA27B), and THAP11. In addition, the genetic basis for SCA4, has recently been identified as a STR expansion in ZFHX3. Given the large and growing number of genes, and different gene variant types, the approach to diagnostic testing for adult-onset HCA can be complex. Testing methods include targeted evaluation of STR expansions (e.g. SCAs, Friedreich ataxia, fragile X-associated tremor/ataxia syndrome, dentatorubral-pallidoluysian atrophy), next generation sequencing for conventional variants, which may include targeted gene panels, whole exome, or whole genome sequencing, followed by various potential additional tests. This review proposes a diagnostic approach for clinical testing, highlights the challenges with current testing technologies, and discusses future advances which may overcome these limitations. Implementing long-read sequencing has the potential to transform the diagnostic approach in HCA, with the overall aim to improve the diagnostic yield.

4.
Bioorg Med Chem Lett ; 110: 129881, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38996936

RESUMEN

The direct-linked coumarin-benzimidazole hybrids, featuring aryl and n-butyl substituents at the N1-position of benzimidazole were synthesized through a Knoevenagel condensation reaction. This reaction involved the condensation of 1,2-diaminobenzene derivatives with coumarin-3-carboxylic acids in the presence of polyphosphoric acid (PPA) at 154 °C. The in vitro antibacterial potency of the hybrid molecules against different gram-positive and gram-negative bacterial strains led to the identification of the hybrids 6m and 6p with a MIC value of 6.25 µg/mL against a gram-negative bacterium, Klebsiella pneumonia ATCC 27736. Cell viability studies on THP-1 cells demonstrated that the compounds 6m and 6p were non-toxic at a concentration of 50 µM. Furthermore, in vivo efficacy studies using a murine neutropenic thigh infection model revealed that both compounds significantly reduced bacterial (Klebsiella pneumonia ATCC 27736) counts (more than 2 log) compared to the control group. Additionally, both compounds exhibited favorable physicochemical properties and drug-likeness characteristics. Consequently, these compounds hold promise as lead candidates for further development of effective antibacterial drugs.


Asunto(s)
Antibacterianos , Bencimidazoles , Cumarinas , Pruebas de Sensibilidad Microbiana , Animales , Humanos , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Bencimidazoles/química , Bencimidazoles/farmacología , Bencimidazoles/síntesis química , Supervivencia Celular/efectos de los fármacos , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Relación Dosis-Respuesta a Droga , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad
5.
Artículo en Inglés | MEDLINE | ID: mdl-38427976

RESUMEN

Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality, affecting people of all races, ages, and sexes. Substantial sex dimorphism exists in the prevalence, manifestation, and outcomes of CVDs. Understanding the role of sex hormones as well as sex-hormone-independent epigenetic mechanisms could play a crucial role in developing effective and sex-specific cardiovascular therapeutics. Existing research highlights significant disparities in sex hormones, epigenetic regulators, and gene expression related to cardiac health, emphasizing the need for a nuanced understanding of these variations between men and women. Despite these differences, current treatment approaches for CVDs often lack sex-specific considerations. A pivotal shift toward personalized medicine, informed by comprehensive insights into sex-specific DNA methylation, histone modifications, and non-coding RNA dynamics, holds the potential to revolutionize CVD management. By understanding sex-specific epigenetic complexities, independent of sex hormone influence, future cardiovascular research can be tailored to achieve effective diagnostic and therapeutic interventions for both men and women. This review summarizes the current knowledge and gaps in epigenetic mechanisms and sex dimorphism implicated in CVDs.

8.
J Cardiovasc Dev Dis ; 11(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38392252

RESUMEN

Cardiovascular diseases (CVDs) represent a significant global health burden, demanding innovative therapeutic approaches. In recent years, mRNA therapeutics have emerged as a promising strategy to combat CVDs effectively. Unlike conventional small-molecule drugs, mRNA therapeutics enable the direct modulation of cellular functions by delivering specific mRNA molecules to target cells. This approach offers unprecedented advantages, including the ability to harness endogenous cellular machinery for protein synthesis, thus allowing precise control over gene expression without insertion into the genome. This review summarizes the current status of the potential of cell-specific mRNA therapeutics in the context of cardiovascular diseases. First, it outlines the challenges associated with traditional CVD treatments and emphasizes the need for targeted therapies. Subsequently, it elucidates the underlying principles of mRNA therapeutics and the development of advanced delivery systems to ensure cell-specificity and enhanced efficacy. Notably, innovative delivery methods such as lipid nanoparticles and exosomes have shown promise in improving the targeted delivery of mRNA to cardiac cells, activated fibroblasts, and other relevant cell types. Furthermore, the review highlights the diverse applications of cell-specific mRNA therapeutics in addressing various aspects of cardiovascular diseases, including atherosclerosis, myocardial infarction, heart failure, and arrhythmias. By modulating key regulatory genes involved in cardiomyocyte proliferation, inflammation, angiogenesis, tissue repair, and cell survival, mRNA therapeutics hold the potential to intervene at multiple stages of CVD pathogenesis. Despite its immense potential, this abstract acknowledges the challenges in translating cell-specific mRNA therapeutics from preclinical studies to clinical applications like off-target effects and delivery. In conclusion, cell-specific mRNA therapeutics have emerged as a revolutionary gene therapy approach for CVD, offering targeted interventions with the potential to significantly improve patient outcomes.

9.
Brain Commun ; 6(4): fcae212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978727

RESUMEN

This scientific commentary refers to 'Pathologic RFC1 repeat expansions do not contribute to the development of inflammatory neuropathies', by Nagy et al. (https://doi.org/10.1093/braincomms/fcae163).

10.
J Refract Surg ; 40(5): e328-e335, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717080

RESUMEN

PURPOSE: To evaluate moderate to high astigmatism corrections on the outcomes of SmartSight lenticule extraction for myopic astigmatism with a new femtosecond laser system. METHODS: Two hundred ninety-two eyes consecutively treated for myopic astigmatism with astigmatism magnitude greater than 1.00 diopter (D) were evaluated at the 6-month follow-up visit. The mean age of the patients was 29 ± 6 years with a mean spherical equivalent of -5.06 ± 2.20 diopters (D) and a mean magnitude of refractive astigmatism of 1.74 ± 0.61 D. RESULTS: At 6 months, astigmatism was 0.10 ± 0.20 D. Uncorrected and corrected distance visual acuities (UDVA and CDVA, respectively) were both 0.0 ± 0.1 logMAR. Differences between postoperative UDVA and preoperative CDVA and the change in CDVA were both +0.4 ± 0.7 lines better than preoperatively (P < .0003). CONCLUSIONS: Lenticule extraction treatment using Smart-Sight is safe and efficacious at 6 months. Findings suggest that moderate to high astigmatism improves after SmartSight lenticule extraction in the treatment of myopic astigmatism. [J Refract Surg. 2024;40(5):e328-e335.].


Asunto(s)
Astigmatismo , Sustancia Propia , Láseres de Excímeros , Miopía , Refracción Ocular , Agudeza Visual , Humanos , Astigmatismo/fisiopatología , Astigmatismo/cirugía , Agudeza Visual/fisiología , Estudios Retrospectivos , Adulto , Refracción Ocular/fisiología , Masculino , Femenino , Miopía/cirugía , Miopía/fisiopatología , Adulto Joven , Sustancia Propia/cirugía , Láseres de Excímeros/uso terapéutico , Topografía de la Córnea , Estudios de Seguimiento , Resultado del Tratamiento , Cirugía Laser de Córnea/métodos
11.
J Biomol Struct Dyn ; : 1-14, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720617

RESUMEN

Herpes simplex virus (HSV) infections affect a wide range of the global population. The emergence of resistance to the existing anti-HSV therapy highlights the necessity for an innovative strategy. The interaction of HSV gD with its main host receptor nectin-1 is a potential target for new antiviral drugs. The aim of this study was to develop a peptide derived from nectin-1 targeting HSV gD using the in-silico method and evaluate them for anti-HSV activity. Residues 59-133 of the Nectin-1 V-domain constitute the interaction interface with HSV gD. Bioinformatic tools viz., PEP-FOLD3, ClusPro 2.0, HawkDock and Desmond were used to model the peptide and confirm its binding specificity with HSV gD protein. The peptides with potential interactions were custom synthesized and anti-HSV activity was evaluated in vitro against HSV-1 and HSV-2 by CPE inhibition assay. Five peptide sequences were identified as exhibiting good interaction with HSV-gD proteins. Among them, peptide N1 (residues 76-90) offered maximum protection against HSV-1 (66.57%) and HSV-2 (71.12%) infections. Modification of the identified peptide through peptidomimetic approaches may further enhance the activity and stability of the identified peptide.Communicated by Ramaswamy H. Sarma.

12.
NPJ Regen Med ; 9(1): 17, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684697

RESUMEN

Historically, a lower incidence of cardiovascular diseases (CVD) and related deaths in women as compared with men of the same age has been attributed to female sex hormones, particularly estrogen and its receptors. Autologous bone marrow stem cell (BMSC) clinical trials for cardiac cell therapy overwhelmingly included male patients. However, meta-analysis data from these trials suggest a better functional outcome in postmenopausal women as compared with aged-matched men. Mechanisms governing sex-specific cardiac reparative activity in BMSCs, with and without the influence of sex hormones, remain unexplored. To discover these mechanisms, Male (M), female (F), and ovariectomized female (OVX) mice-derived EPCs were subjected to a series of molecular and epigenetic analyses followed by in vivo functional assessments of cardiac repair. F-EPCs and OVX EPCs show a lower inflammatory profile and promote enhanced cardiac reparative activity after intra-cardiac injections in a male mouse model of myocardial infarction (MI). Epigenetic sequencing revealed a marked difference in the occupancy of the gene repressive H3K9me3 mark, particularly at transcription start sites of key angiogenic and proinflammatory genes in M-EPCs compared with F-EPCs and OVX-EPCs. Our study unveiled that functional sex differences in EPCs are, in part, mediated by differential epigenetic regulation of the proinflammatory and anti-angiogenic gene CCL3, orchestrated by the control of H3K9me3 by histone methyltransferase, G9a/Ehmt2. Our research highlights the importance of considering the sex of donor cells for progenitor-based tissue repair.

13.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005419

RESUMEN

Background: Amyloidosis is a major long-term complication of chronic disease; however, whether it represents one of the complications of post-myocardial infarction (MI) is yet to be fully understood. Methods: Using wild-type and knocked-out MI mouse models and characterizing in vitro the exosomal communication between bone marrow-derived macrophages and activated mesenchymal stromal cells (MSC) isolated after MI, we investigated the mechanism behind Serum Amyloid A 3 (SAA3) protein overproduction in injured hearts. Results: Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived SAA3 monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from a subset of activated MSC, which, in response to MI, acquire the expression of a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin (PDPN). Cardiac MSC PDPN+ communicate with and activate macrophages through their extracellular vesicles or exosomes. Specifically, MSC PDPN+ derived exosomes (MSC PDPN+ Exosomes) are enriched in SAA3 and exosomal SAA3 protein engages with Toll-like receptor 2 (TRL2) on macrophages, triggering an overproduction and impaired clearance of SAA3 proteins, resulting in aggregation of SAA3 monomers as rigid amyloid deposits in the extracellular space. The onset of amyloid fibers deposition alongside extra-cellular-matrix (ECM) proteins in the ischemic heart exacerbates the rigidity and stiffness of the scar, hindering the contractility of viable myocardium and overall impairing organ function. Using SAA3 and TLR2 deficient mouse models, we show that SAA3 delivered by MSC PDPN+ exosomes promotes post-MI amyloidosis. Inhibition of SAA3 aggregation via administration of a retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils, positively modulates the scar formation, and improves heart function post-MI. Conclusion: Overall, our findings provide mechanistic insights into post-MI amyloidosis and suggest that SAA3 may be an attractive target for effective scar reversal after ischemic injury and a potential target in multiple diseases characterized by a similar pattern of inflammation and amyloid deposition. NOVELTY AND SIGNIFICANCE: What is known? Accumulation of rigid amyloid structures in the left ventricular wall impairs ventricle contractility.After myocardial infarction cardiac Mesenchymal Stromal Cells (MSC) acquire Podoplanin (PDPN) to better interact with immune cells.Amyloid structures can accumulate in the heart after chronic inflammatory conditions. What information does this article contribute? Whether accumulation of cumbersome amyloid structures in the ischemic scar impairs left ventricle contractility, and scar reversal after myocardial infarction (MI) has never been investigated.The pathophysiological relevance of PDPN acquirement by MSC and the functional role of their secreted exosomes in the context of post-MI cardiac remodeling has not been investigated.Amyloid structures are present in the scar after ischemia and are composed of macrophage-derived Serum Amyloid A (SAA) 3 monomers, although mechanisms of SAA3 overproduction is not established. SUMMARY OF NOVELTY AND SIGNIFICANCE: Here, we report that amyloidosis, a secondary phenomenon of an already preexisting and prolonged chronic inflammatory condition, occurs after MI and that amyloid structures are composed of macrophage-derived SAA3 monomers. Frequently studied cardiac amyloidosis are caused by aggregation of immunoglobulin light chains, transthyretin, fibrinogen, and apolipoprotein in a healthy heart as a consequence of systemic chronic inflammation leading to congestive heart failure with various types of arrhythmias and tissue stiffness. Although chronic MI is considered a systemic inflammatory condition, studies regarding the possible accumulation of amyloidogenic proteins after MI and the mechanisms involved in that process are yet to be reported. Here, we show that SAA3 overproduction in macrophages is triggered in a Toll-like Receptor 2 (TLR2)-p38MAP Kinase-dependent manner by exosomal communication from a subset of activated MSC, which, in response to MI, express a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin. We provide the full mechanism of this phenomenon in murine models and confirm SAA3 amyloidosis in failing human heart samples. Moreover, we developed a retro-inverso D-peptide therapeutic approach, "DRI-R5S," specifically designed to bind SAA3 monomers and prevent post-MI aggregation and deposition of SAA3 amyloid fibrils without interfering with the innate immune response.

14.
J Parkinsons Dis ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38995803

RESUMEN

Pregnancy in women with early-onset Parkinson's disease (PD) is likely to have a higher frequency given the trend toward increasing maternal age, thus resulting in a greater overlap time between childbearing age and PD risk. Deep brain stimulation (DBS) therapy is nowadays offered to PD patients at earlier stage of the disease, when women can still be pre-menopausal. However, few data are available about DBS safety during pregnancy. From a review of the available literature, only one article was published on this topic so far. Therefore, we have developed a clinical consensus on the safety of DBS during pregnancy in PD patients.

15.
Sci Adv ; 10(32): eadp6182, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121218

RESUMEN

Endothelial cells (ECs) are highly plastic, capable of differentiating into various cell types. Endothelial-to-mesenchymal transition (EndMT) is crucial during embryonic development and contributes substantially to vascular dysfunction in many cardiovascular diseases (CVDs). While targeting EndMT holds therapeutic promise, understanding its mechanisms and modulating its pathways remain challenging. Using single-cell RNA sequencing on three in vitro EndMT models, we identified conserved gene signatures. We validated original regulators in vitro and in vivo during embryonic heart development and peripheral artery disease. EndMT induction led to global expression changes in all EC subtypes rather than in mesenchymal clusters. We identified mitochondrial calcium uptake as a key driver of EndMT; inhibiting mitochondrial calcium uniporter (MCU) prevented EndMT in vitro, and conditional Mcu deletion in ECs blocked mesenchymal activation in a hind limb ischemia model. Tissues from patients with critical limb ischemia with EndMT features exhibited significantly elevated endothelial MCU. These findings highlight MCU as a regulator of EndMT and a potential therapeutic target.


Asunto(s)
Señalización del Calcio , Células Endoteliales , Transición Epitelial-Mesenquimal , Mitocondrias , RNA-Seq , Análisis de la Célula Individual , Animales , Humanos , Mitocondrias/metabolismo , RNA-Seq/métodos , Ratones , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Canales de Calcio/metabolismo , Canales de Calcio/genética , Isquemia/metabolismo , Isquemia/patología , Calcio/metabolismo , Análisis de Expresión Génica de una Sola Célula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA