Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 78(1): 295-306, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36811393

RESUMEN

BACKGROUND AND AIMS: Patients with severe alcohol-associated hepatitis have high morbidity and mortality. Novel therapeutic approaches are urgently needed. The aims of our study were to confirm the predictive value of cytolysin-positive Enterococcus faecalis ( E. faecalis ) for mortality in patients with alcohol-associated hepatitis and to assess the protective effect of specific chicken immunoglobulin Y (IgY) antibodies against cytolysin in vitro and in a microbiota-humanized mouse model of ethanol-induced liver disease. APPROACH AND RESULTS: We investigated a multicenter cohort of 26 subjects with alcohol-associated hepatitis and confirmed our previous findings that the presence of fecal cytolysin-positive E. faecalis predicted 180-day mortality in those patients. After combining this smaller cohort with our previously published multicenter cohort, the presence of fecal cytolysin has a better diagnostic area under the curve, better other accuracy measures, and a higher odds ratio to predict death in patients with alcohol-associated hepatitis than other commonly used liver disease models. In a precision medicine approach, we generated IgY antibodies against cytolysin from hyperimmunized chickens. Neutralizing IgY antibodies against cytolysin reduced cytolysin-induced cell death in primary mouse hepatocytes. The oral administration of IgY antibodies against cytolysin decreased ethanol-induced liver disease in gnotobiotic mice colonized with stool from cytolysin-positive patients with alcohol-associated hepatitis. CONCLUSIONS: E. faecalis cytolysin is an important mortality predictor in alcohol-associated hepatitis patients, and its targeted neutralization through specific antibodies improves ethanol-induced liver disease in microbiota-humanized mice.


Asunto(s)
Etanol , Hepatitis Alcohólica , Animales , Ratones , Pollos , Inmunoglobulinas/uso terapéutico , Anticuerpos , Citotoxinas , Hepatitis Alcohólica/tratamiento farmacológico
2.
Nature ; 560(7717): 198-203, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30046112

RESUMEN

Dysregulated NLRP3 inflammasome activity results in uncontrolled inflammation, which underlies many chronic diseases. Although mitochondrial damage is needed for the assembly and activation of the NLRP3 inflammasome, it is unclear how macrophages are able to respond to structurally diverse inflammasome-activating stimuli. Here we show that the synthesis of mitochondrial DNA (mtDNA), induced after the engagement of Toll-like receptors, is crucial for NLRP3 signalling. Toll-like receptors signal via the MyD88 and TRIF adaptors to trigger IRF1-dependent transcription of CMPK2, a rate-limiting enzyme that supplies deoxyribonucleotides for mtDNA synthesis. CMPK2-dependent mtDNA synthesis is necessary for the production of oxidized mtDNA fragments after exposure to NLRP3 activators. Cytosolic oxidized mtDNA associates with the NLRP3 inflammasome complex and is required for its activation. The dependence on CMPK2 catalytic activity provides opportunities for more effective control of NLRP3 inflammasome-associated diseases.


Asunto(s)
ADN Mitocondrial/biosíntesis , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Biocatálisis , Citosol/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/metabolismo , Oxidación-Reducción , Transducción de Señal , Receptores Toll-Like/inmunología
3.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34253615

RESUMEN

We investigated the role of mesothelin (Msln) and thymocyte differentiation antigen 1 (Thy1) in the activation of fibroblasts across multiple organs and demonstrated that Msln-/- mice are protected from cholestatic fibrosis caused by Mdr2 (multidrug resistance gene 2) deficiency, bleomycin-induced lung fibrosis, and UUO (unilateral urinary obstruction)-induced kidney fibrosis. On the contrary, Thy1-/- mice are more susceptible to fibrosis, suggesting that a Msln-Thy1 signaling complex is critical for tissue fibroblast activation. A similar mechanism was observed in human activated portal fibroblasts (aPFs). Targeting of human MSLN+ aPFs with two anti-MSLN immunotoxins killed fibroblasts engineered to express human mesothelin and reduced collagen deposition in livers of bile duct ligation (BDL)-injured mice. We provide evidence that antimesothelin-based therapy may be a strategy for treatment of parenchymal organ fibrosis.


Asunto(s)
Colestasis/tratamiento farmacológico , Fibroblastos/inmunología , Inmunoterapia , Cirrosis Hepática/tratamiento farmacológico , Animales , Colestasis/genética , Colestasis/inmunología , Colágeno/inmunología , Fibroblastos/efectos de los fármacos , Humanos , Inmunotoxinas/administración & dosificación , Cirrosis Hepática/genética , Cirrosis Hepática/inmunología , Mesotelina/genética , Mesotelina/inmunología , Ratones , Antígenos Thy-1/genética , Antígenos Thy-1/inmunología
4.
J Biol Chem ; 298(7): 102056, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35605662

RESUMEN

Peroxisome proliferator-activated receptor delta (PPARδ) agonists have been shown to exert beneficial effects in liver disease and reduce total bile acid levels. The mechanism(s) whereby PPARδ agonism reduces bile acid levels are, however, unknown, and therefore the aim of the present study was to investigate the molecular pathways responsible for reducing bile acid synthesis in hepatocytes, following treatment with the selective PPARδ agonist, seladelpar. We show that administration of seladelpar to WT mice repressed the liver expression of cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme for bile acid synthesis, and decreased plasma 7α-hydroxy-4-cholesten-3-one (C4), a freely diffusible metabolite downstream of Cyp7a1. In primary mouse hepatocytes, seladelpar significantly reduced the expression of Cyp7a1 independent of the nuclear bile acid receptor, Farnesoid X receptor. In addition, seladelpar upregulated fibroblast growth factor 21 (Fgf21) in mouse liver, serum, and in cultured hepatocytes. We demonstrate that recombinant Fgf21 protein activated the c-Jun N-terminal kinase (JNK) signaling pathway and repressed Cyp7a1 gene expression in primary hepatocytes. The suppressive effect of seladelpar on Cyp7a1 expression was blocked by a JNK inhibitor as well as in the absence of Fgf21, indicating that Fgf21 plays an indispensable role in PPARδ-mediated downregulation of Cyp7a1. Finally, reduction of CYP7A1 expression by seladelpar was confirmed in primary human hepatocytes. In conclusion, we show that seladelpar reduces bile acid synthesis via an FGF21-dependent mechanism that signals at least partially through JNK to repress CYP7A1.


Asunto(s)
Acetatos , Ácidos y Sales Biliares , Colesterol 7-alfa-Hidroxilasa , Factores de Crecimiento de Fibroblastos , PPAR delta , Acetatos/farmacología , Animales , Ácidos y Sales Biliares/biosíntesis , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Humanos , Ratones , PPAR delta/agonistas , Transducción de Señal
5.
Semin Liver Dis ; 42(3): 233-249, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36001995

RESUMEN

Nonalcoholic liver disease is a component of metabolic syndrome associated with obesity, insulin resistance, and hyperlipidemia. Excessive alcohol consumption may accelerate the progression of steatosis, steatohepatitis, and fibrosis. While simple steatosis is considered a benign condition, nonalcoholic steatohepatitis with inflammation and fibrosis may progress to cirrhosis, liver failure, and hepatocellular cancer. Studies in rodent experimental models and primary cell cultures have demonstrated several common cellular and molecular mechanisms in the pathogenesis and regression of liver fibrosis. Chronic injury and death of hepatocytes cause the recruitment of myeloid cells, secretion of inflammatory and fibrogenic cytokines, and activation of myofibroblasts, resulting in liver fibrosis. In this review, we discuss the role of metabolically injured hepatocytes in the pathogenesis of nonalcoholic steatohepatitis and alcohol-associated liver disease. Specifically, the role of chemokine production and de novo lipogenesis in the development of steatotic hepatocytes and the pathways of steatosis regulation are discussed.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Cirrosis Hepática/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/complicaciones
6.
Am J Pathol ; 191(9): 1564-1579, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34119473

RESUMEN

Although hepatocellular cancer (HCC) usually occurs in the setting of liver fibrosis, the causal relationship between liver fibrosis and HCC is unclear. in vivo and in vitro models of HCC involving Colr/r mice (that produce a collagenase-resistant type I collagen) or wild-type (WT) mice were used to assess the relationship between type I collagen, liver fibrosis, and experimental HCC. HCC was either chemically induced in WT and Colr/r mice or Hepa 1-6 cells were engrafted into WT and Colr/r livers. The effect of hepatic stellate cells (HSCs) from WT and Colr/r mice on the growth of Hepa 1-6 cells was studied by using multicellular tumor spheroids and xenografts. Collagen type I deposition and fibrosis were increased in Colr/r mice, but they developed fewer and smaller tumors. Hepa 1-6 cells had reduced tumor growth in the livers of Colr/r mice. Although Colr/r HSCs exhibited a more activated phenotype, Hepa 1-6 growth and malignancy were suppressed in multicellular tumor spheroids and in xenografts containing Colr/r HSCs. Treatment with vitronectin, which mimics the presence of degraded collagen fragments, converted the Colr/r phenotype into a WT phenotype. Although Colr/r mice have increased liver fibrosis, they exhibited decreased HCC in several models. Thus, increased liver type I collagen does not produce increased experimental HCC.


Asunto(s)
Carcinoma Hepatocelular/patología , Colágeno Tipo I/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas Experimentales/patología , Animales , Línea Celular Tumoral , Células Estrelladas Hepáticas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL
7.
Hepatology ; 74(2): 667-685, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33550587

RESUMEN

BACKGROUND AND AIMS: In clinical and experimental NASH, the origin of the scar-forming myofibroblast is the HSC. We used foz/foz mice on a Western diet to characterize in detail the phenotypic changes of HSCs in a NASH model. APPROACH AND RESULTS: We examined the single-cell expression profiles (scRNA sequencing) of HSCs purified from the normal livers of foz/foz mice on a chow diet, in NASH with fibrosis of foz/foz mice on a Western diet, and in livers during regression of NASH after switching back to a chow diet. Selected genes were analyzed using immunohistochemistry, quantitative real-time PCR, and short hairpin RNA knockdown in primary mouse HSCs. Our analysis of the normal liver identified two distinct clusters of quiescent HSCs that correspond to their acinar position of either pericentral vein or periportal vein. The NASH livers had four distinct HSC clusters, including one representing the classic fibrogenic myofibroblast. The three other HSC clusters consisted of a proliferating cluster, an intermediate activated cluster, and an immune and inflammatory cluster. The livers with NASH regression had one cluster of inactivated HSCs, which was similar to, but distinct from, the quiescent HSCs. CONCLUSIONS: Analysis of single-cell RNA sequencing in combination with an interrogation of previous studies revealed an unanticipated heterogeneity of HSC phenotypes under normal and injured states.


Asunto(s)
Redes Reguladoras de Genes , Células Estrelladas Hepáticas/metabolismo , Hígado/patología , Miofibroblastos/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Heterogeneidad Genética , Células Estrelladas Hepáticas/patología , Humanos , Hígado/citología , Masculino , Ratones , Ratones Transgénicos , Mutación , Enfermedad del Hígado Graso no Alcohólico/etiología , Cultivo Primario de Células , RNA-Seq , Análisis de la Célula Individual
8.
Stem Cells ; 39(12): 1701-1717, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34460131

RESUMEN

With an increasing number of patients with degenerative hepatic diseases, such as liver fibrosis, and a limited supply of donor organs, there is an unmet need for therapies that can repair or regenerate damaged liver tissue. Treatment with macrophages that are capable of phagocytosis and anti-inflammatory activities such as secretion of matrix metalloproteinases (MMPs) provide an attractive cellular therapy approach. Human induced pluripotent stem cells (iPSCs) are capable of efficiently generating a large-scale, homogenous population of human macrophages using fully defined feeder- and serum-free differentiation protocol. Human iPSC-macrophages exhibit classical surface cell markers and phagocytic activity similar to peripheral blood-derived macrophages. Moreover, gene and cytokine expression analysis reveal that these macrophages can be efficiently polarized to pro-inflammatory M1 or anti-inflammatory M2 phenotypes in presence of LPS + IFN-γ and IL-4 + IL-13, respectively. M1 macrophages express high level of CD80, TNF-α, and IL-6 while M2 macrophages show elevated expression of CD206, CCL17, and CCL22. Here, we demonstrate that treatment of liver fibrosis with both human iPSC-derived macrophage populations and especially M2 subtype significantly reduces fibrogenic gene expression and disease associated histological markers including Sirius Red, αSMA and desmin in immunodeficient Rag2-/- γc-/- mice model, making this approach a promising cell-based avenue to ameliorate fibrosis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Cirrosis Hepática , Macrófagos , Animales , Diferenciación Celular , Citocinas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cirrosis Hepática/terapia , Macrófagos/metabolismo , Ratones
9.
Semin Liver Dis ; 41(4): 507-515, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34130335

RESUMEN

Interleukin 17A (IL-17A)-producing T helper 17 (Th17) cells were identified as a subset of T helper cells that play a critical role in host defense against bacterial and fungal pathogens. Th17 cells differentiate from Th0 naïve T-cells in response to transforming growth factor ß1 (TGF-ß1) and IL-6, the cytokines which also drive development of liver fibrosis, require activation of transcription factor retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt). IL-17A signals through the ubiquitously expressed receptor IL-17RA. Expression of IL-17RA is upregulated in patients with hepatitis B virus/hepatitis C virus (HBV/HCV) infections, nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (AALD), hepatocellular carcinoma (HCC), and experimental models of chronic toxic liver injury. The role of IL-17 signaling in the pathogenesis of NASH- and AALD-induced metabolic liver injury and HCC will be the focus of this review. The role of IL-17A-IL-17RA axis in mediation of the cross-talk between metabolically injured hepatic macrophages, hepatocytes, and fibrogenic myofibroblasts will be discussed.


Asunto(s)
Interleucina-17 , Hepatopatías , Carcinoma Hepatocelular , Humanos , Hígado , Cirrosis Hepática , Hepatopatías/genética , Hepatopatías/patología , Neoplasias Hepáticas , Células Th17
10.
J Hepatol ; 74(1): 156-167, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763266

RESUMEN

BACKGROUND & AIMS: Increased hepatocyte death contributes to the pathology of acute and chronic liver diseases. However, the role of hepatocyte pyroptosis and extracellular inflammasome release in liver disease is unknown. METHODS: We used primary mouse and human hepatocytes, hepatocyte-specific leucine 351 to proline Nlrp3KICreA mice, and GsdmdKO mice to investigate pyroptotic cell death in hepatocytes and its impact on liver inflammation and damage. Extracellular NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes were isolated from mutant NLRP3-YFP HEK cells and internalisation was studied in LX2 and primary human hepatic stellate cells. We also examined a cohort of 154 adult patients with biopsy-proven non-alcoholic fatty liver disease (Sir Charles Gairdner Hospital, Nedlands, Western Australia). RESULTS: We demonstrated that primary mouse and human hepatocytes can undergo pyroptosis upon NLRP3 inflammasome activation with subsequent release of NLRP3 inflammasome proteins that amplify and perpetuate inflammasome-driven fibrogenesis. Pyroptosis was inhibited by blocking caspase-1 and gasdermin D activation. The activated form of caspase-1 was detected in the livers and in serum from patients with non-alcoholic steatohepatitis and correlated with disease severity. Nlrp3KICreA mice showed spontaneous liver fibrosis under normal chow diet, and increased sensitivity to liver damage and inflammation after treatment with low dose lipopolysaccharide. Mechanistically, hepatic stellate cells engulfed extracellular NLRP3 inflammasome particles leading to increased IL-1ß secretion and α-smooth muscle actin expression. This effect was abrogated when cells were pre-treated with the endocytosis inhibitor cytochalasin B. CONCLUSIONS: These results identify hepatocyte pyroptosis and release of inflammasome components as a novel mechanism to propagate liver injury and liver fibrosis development. LAY SUMMARY: Our findings identify a novel mechanism of inflammation in the liver. Experiments in cell cultures, mice, and human samples show that a specific form of cell death, called pyroptosis, leads to the release of complex inflammatory particles, the NLRP3 inflammasome, from inside hepatocytes into the extracellular space. From there they are taken up by other cells and thereby mediate inflammatory and pro-fibrogenic stress signals. The discovery of this mechanism may lead to novel treatments for chronic liver diseases in the future.


Asunto(s)
Hepatocitos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Cirrosis Hepática , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/inmunología , Animales , Caspasa 1/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Cirrosis Hepática/inmunología , Cirrosis Hepática/metabolismo , Ratones , Ratones Endogámicos NOD , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Sistemas de Translocación de Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Gastroenterology ; 158(6): 1728-1744.e14, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31982409

RESUMEN

BACKGROUND & AIMS: Development of liver fibrosis is associated with activation of quiescent hepatic stellate cells (HSCs) into collagen type I-producing myofibroblasts (activated HSCs). Cessation of liver injury often results in fibrosis resolution and inactivation of activated HSCs/myofibroblasts into a quiescent-like state (inactivated HSCs). We aimed to identify molecular features of phenotypes of HSCs from mice and humans. METHODS: We performed studies with LratCre, Ets1-floxed, Nf1-floxed, Pparγ-floxed, Gata6-floxed, Rag2-/-γc-/-, and C57/Bl6 (control) mice. Some mice were given carbon tetrachloride (CCl4) to induce liver fibrosis, with or without a peroxisome proliferator-activated receptor-γ (PPARγ) agonist. Livers from mice were analyzed by immunohistochemistry. Quiescent, activated, and inactivated HSCs were isolated from livers of Col1α1YFP mice and analyzed by chromatin immunoprecipitation and sequencing. Human HSCs were isolated from livers denied for transplantation. We compared changes in gene expression patterns and epigenetic modifications (histone H3 lysine 4 dimethylation and histone H3 lysine 27 acetylation) in primary mouse and human HSCs. Transcription factors were knocked down with small hairpin RNAs in mouse HSCs. RESULTS: Motif enrichment identified E26 transcription-specific transcription factors (ETS) 1, ETS2, GATA4, GATA6, interferon regulatory factor (IRF) 1, and IRF2 transcription factors as regulators of the mouse and human HSC lineage. Small hairpin RNA-knockdown of these transcription factors resulted in increased expression of genes that promote fibrogenesis and inflammation, and loss of HSC phenotype. Disruption of Gata6 or Ets1, or Nf1 or Pparγ (which are regulated by ETS1), increased the severity of CCl4-induced liver fibrosis in mice compared to control mice. Only mice with disruption of Gata6 or Pparγ had defects in fibrosis resolution after CCl4 administration was stopped, associated with persistent activation of HSCs. Administration of a PPARγ agonist accelerated regression of liver fibrosis after CCl4 administration in control mice but not in mice with disruption of Pparγ. CONCLUSIONS: Phenotypes of HSCs from humans and mice are regulated by transcription factors, including ETS1, ETS2, GATA4, GATA6, IRF1, and IRF2. Activated mouse and human HSCs can revert to a quiescent-like, inactivated phenotype. We found GATA6 and PPARγ to be required for inactivation of human HSCs and regression of liver fibrosis in mice.


Asunto(s)
Factor de Transcripción GATA6/metabolismo , Células Estrelladas Hepáticas/patología , Cirrosis Hepática Experimental/patología , Proteína Proto-Oncogénica c-ets-1/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Factor de Transcripción GATA6/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Cirrosis Hepática Experimental/inducido químicamente , Ratones , Ratones Transgénicos , Miofibroblastos/patología , PPAR gamma/agonistas , PPAR gamma/genética , Cultivo Primario de Células , Proteína Proto-Oncogénica c-ets-1/genética
12.
Hepatology ; 72(6): 2182-2196, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32654263

RESUMEN

BACKGROUND AND AIMS: Alcoholic hepatitis (AH) is a severe manifestation of alcohol-associated liver disease (ALD) with high mortality. Although gut bacteria and fungi modulate disease severity, little is known about the effects of the viral microbiome (virome) in patients with ALD. APPROACH AND RESULTS: We extracted virus-like particles from 89 patients with AH who were enrolled in a multicenter observational study, 36 with alcohol use disorder (AUD), and 17 persons without AUD (controls). Virus-like particles from fecal samples were fractionated using differential filtration techniques, and metagenomic sequencing was performed to characterize intestinal viromes. We observed an increased viral diversity in fecal samples from patients with ALD, with the most significant changes in samples from patients with AH. Escherichia-, Enterobacteria-, and Enterococcus phages were over-represented in fecal samples from patients with AH, along with significant increases in mammalian viruses such as Parvoviridae and Herpesviridae. Antibiotic treatment was associated with higher viral diversity. Specific viral taxa, such as Staphylococcus phages and Herpesviridae, were associated with increased disease severity, indicated by a higher median Model for End-Stage Liver Disease score, and associated with increased 90-day mortality. CONCLUSIONS: In conclusion, intestinal viral taxa are altered in fecal samples from patients with AH and associated with disease severity and mortality. Our study describes an intestinal virome signature associated with AH.


Asunto(s)
Enfermedad Hepática en Estado Terminal/virología , Hepatitis Alcohólica/virología , Mucosa Intestinal/virología , Cirrosis Hepática/virología , Viroma/genética , Adulto , Anciano , Animales , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Estudios de Casos y Controles , ADN Viral/aislamiento & purificación , Enfermedad Hepática en Estado Terminal/diagnóstico , Enfermedad Hepática en Estado Terminal/mortalidad , Enfermedad Hepática en Estado Terminal/terapia , Heces/virología , Femenino , Hepatitis Alcohólica/diagnóstico , Hepatitis Alcohólica/mortalidad , Hepatitis Alcohólica/terapia , Herpesviridae/genética , Herpesviridae/aislamiento & purificación , Humanos , Hígado/patología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/mortalidad , Cirrosis Hepática/terapia , Masculino , Metagenómica , Persona de Mediana Edad , Parvoviridae/genética , Parvoviridae/aislamiento & purificación , ARN Viral/aislamiento & purificación , Índice de Severidad de la Enfermedad , Tasa de Supervivencia
13.
J Hepatol ; 72(1): 135-145, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31562906

RESUMEN

BACKGROUND & AIMS: The extrahepatic bile duct is the primary tissue initially affected by biliary atresia. Biliary atresia is a cholangiopathy which exclusively affects neonates. Current animal models suggest that the developing bile duct is uniquely susceptible to damage. In this study, we aimed to define the anatomical and functional differences between the neonatal and adult mouse extrahepatic bile ducts. METHODS: We studied mouse passaged cholangiocytes, mouse BALB/c neonatal and adult primary cholangiocytes, as well as isolated extrahepatic bile ducts, and a collagen reporter mouse. The methods used included transmission electron microscopy, lectin staining, immunostaining, rhodamine uptake assays, bile acid toxicity assays, and in vitro modeling of the matrix. RESULTS: The cholangiocyte monolayer of the neonatal extrahepatic bile duct was immature, lacking the uniform apical glycocalyx and mature cell-cell junctions typical of adult cholangiocytes. Functional studies showed that the glycocalyx protected against bile acid injury and that neonatal cholangiocyte monolayers were more permeable than adult monolayers. In adult ducts, the submucosal space was filled with collagen I, elastin, hyaluronic acid, and proteoglycans. In contrast, the neonatal submucosa had little collagen I and elastin, although both increased rapidly after birth. In vitro modeling of the matrix suggested that the composition of the neonatal submucosa relative to the adult submucosa led to increased diffusion of bile. A Col-GFP reporter mouse showed that cells in the neonatal but not adult submucosa were actively producing collagen. CONCLUSION: We identified 4 key differences between the neonatal and adult extrahepatic bile duct. We showed that these features may have functional implications, suggesting the neonatal extrahepatic bile ducts are particularly susceptible to injury and fibrosis. LAY SUMMARY: Biliary atresia is a disease that affects newborns and is characterized by extrahepatic bile duct injury and obstruction, resulting in liver injury. We identify 4 key differences between the epithelial and submucosal layers of the neonatal and adult extrahepatic bile duct and show that these may render the neonatal duct particularly susceptible to injury.


Asunto(s)
Conductos Biliares Extrahepáticos/embriología , Conductos Biliares Extrahepáticos/crecimiento & desarrollo , Células Epiteliales/metabolismo , Membrana Mucosa/metabolismo , Animales , Animales Recién Nacidos , Conductos Biliares Extrahepáticos/citología , Conductos Biliares Extrahepáticos/diagnóstico por imagen , Atresia Biliar , Supervivencia Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Elastina/metabolismo , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ácido Hialurónico/metabolismo , Inmunohistoquímica , Uniones Intercelulares/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Proteoglicanos/metabolismo
14.
J Hepatol ; 73(1): 149-160, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32087348

RESUMEN

BACKGROUND & AIMS: Steatohepatitis drives fibrogenesis in alcohol-related liver disease. Recent studies have suggested that hepatic stellate cells (HSCs) may regulate the parenchymal cell injury and inflammation that precedes liver fibrosis, although the mechanism remains incompletely defined. Neuropilin-1 (NRP-1) and synectin are membrane proteins implicated in HSC activation. In this study, we disrupted NRP-1 and synectin as models to evaluate the role of HSC activation on the development of steatohepatitis in response to alcohol feeding in mice. METHODS: Mice with HSC-selective deletion of NRP (ColCre/Nrp1loxP) or synectin (ColCre/synectinloxP) vs. paired Nrp1loxP or synectinloxP mice were fed a control diet or the chronic/binge alcohol feeding model. Several markers of steatosis and inflammation were evaluated. RESULTS: ColCre/Nrp1loxP mice showed less fibrosis, as expected, but also less inflammation and steatosis, with lower hepatic triglyceride content. Similar results were observed in the synectin model. Hepatocytes treated with supernatant of HSCs from ColCre/Nrp1loxP mice compared to supernatant from Nrp1loxP mice were protected against ethanol-induced lipid droplet formation. An adipokine and inflammatory protein array from the supernatant of HSCs with NRP-1 knockdown showed a significant reduction in Igfbp3 (a major insulin-like growth factor-binding protein with multiple metabolic functions) and an increase in SerpinA12 (a serine-protease inhibitor) secretion compared to wild-type HSCs. Recombinant Igfbp3 induced lipid droplets, triglyceride accumulation, and lipogenic genes in hepatocytes in vitro, while SerpinA12 was protective against ethanol-induced steatosis. Finally, Igfbp3 was increased, and SerpinA12 was decreased in serum and liver tissue from patients with alcoholic hepatitis. CONCLUSION: Selective deletion of NRP-1 from HSCs attenuates alcohol-induced steatohepatitis through regulation of Igfbp3 and SerpinA12 signaling. LAY SUMMARY: Hepatic stellate cells are known for their role in fibrosis (scarring of the liver). In this study, we describe their role in the modulation of fat deposition and inflammation in the liver, which occurs secondary to alcohol damage.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hígado Graso Alcohólico , Células Estrelladas Hepáticas/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Neuropilina-1/metabolismo , Serpinas/metabolismo , Animales , Modelos Animales de Enfermedad , Hígado Graso Alcohólico/complicaciones , Hígado Graso Alcohólico/metabolismo , Hígado Graso Alcohólico/patología , Fibrosis/etiología , Fibrosis/inmunología , Inflamación/metabolismo , Ratones , Inhibidores de Serina Proteinasa/metabolismo , Transducción de Señal
15.
J Hepatol ; 72(5): 946-959, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31899206

RESUMEN

BACKGROUND & AIMS: Chronic alcohol consumption is a leading risk factor for the development of hepatocellular carcinoma (HCC), which is associated with a marked increase in hepatic expression of pro-inflammatory IL-17A and its receptor IL-17RA. METHODS: Genetic deletion and pharmacological blocking were used to characterize the role of IL-17A/IL-17RA signaling in the pathogenesis of HCC in mouse models and human specimens. RESULTS: We demonstrate that the global deletion of the Il-17ra gene suppressed HCC in alcohol-fed diethylnitrosamine-challenged Il-17ra-/- and major urinary protein-urokinase-type plasminogen activator/Il-17ra-/- mice compared with wild-type mice. When the cell-specific role of IL-17RA signaling was examined, the development of HCC was decreased in both alcohol-fed Il-17raΔMΦ and Il-17raΔHep mice devoid of IL-17RA in myeloid cells and hepatocytes, but not in Il-17raΔHSC mice (deficient in IL-17RA in hepatic stellate cells). Deletion of Il-17ra in myeloid cells ameliorated tumorigenesis via suppression of pro-tumorigenic/inflammatory and pro-fibrogenic responses in alcohol-fed Il-17raΔMΦ mice. Remarkably, despite a normal inflammatory response, alcohol-fed Il-17raΔHep mice developed the fewest tumors (compared with Il-17raΔMΦ mice), with reduced steatosis and fibrosis. Steatotic IL-17RA-deficient hepatocytes downregulated the expression of Cxcl1 and other chemokines, exhibited a striking defect in tumor necrosis factor (TNF)/TNF receptor 1-dependent caspase-2-SREBP1/2-DHCR7-mediated cholesterol synthesis, and upregulated the production of antioxidant vitamin D3. The pharmacological blocking of IL-17A/Th-17 cells using anti-IL-12/IL-23 antibodies suppressed the progression of HCC (by 70%) in alcohol-fed mice, indicating that targeting IL-17 signaling might provide novel strategies for the treatment of alcohol-induced HCC. CONCLUSIONS: Overall, IL-17A is a tumor-promoting cytokine, which critically regulates alcohol-induced hepatic steatosis, inflammation, fibrosis, and HCC. LAY SUMMARY: IL-17A is a tumor-promoting cytokine, which critically regulates inflammatory responses in macrophages (Kupffer cells and bone-marrow-derived monocytes) and cholesterol synthesis in steatotic hepatocytes in an experimental model of alcohol-induced HCC. Therefore, IL-17A may be a potential therapeutic target for patients with alcohol-induced HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Hepatocitos/metabolismo , Interleucina-17/metabolismo , Macrófagos del Hígado/metabolismo , Cirrosis Hepática/complicaciones , Cirrosis Hepática/metabolismo , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/metabolismo , Neoplasias Hepáticas/metabolismo , Transducción de Señal/genética , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Etanol/efectos adversos , Eliminación de Gen , Humanos , Cirrosis Hepática/patología , Hepatopatías Alcohólicas/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-17/deficiencia , Receptores de Interleucina-17/genética , Transcriptoma
16.
Gastroenterology ; 156(4): 1156-1172.e6, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30445007

RESUMEN

BACKGROUND & AIMS: Although there are associations among oxidative stress, reduced nicotinamide adenine dinucleotide phosphate oxidase (NOX) activation, and hepatocellular carcinoma (HCC) development, it is not clear how NOX contributes to hepatocarcinogenesis. We studied the functions of different NOX proteins in mice after administration of a liver carcinogen. METHODS: Fourteen-day-old Nox1-/- mice, Nox4-/- mice, Nox1-/-Nox4-/- (double-knockout) mice, and wild-type (WT) C57BL/6 mice were given a single intraperitoneal injection of diethylnitrosamine (DEN) and liver tumors were examined at 9 months. We also studied the effects of DEN in mice with disruption of Nox1 specifically in hepatocytes (Nox1ΔHep), hepatic stellate cells (Nox1ΔHep), or macrophages (Nox1ΔMac). Some mice were also given injections of the NOX1-specific inhibitor ML171. To study the acute effects of DEN, 8-12-week-old mice were given a single intraperitoneal injection, and liver and serum were collected at 72 hours. Liver tissues were analyzed by histologic examination, quantitative polymerase chain reaction, and immunoblots. Hepatocytes and macrophages were isolated from WT and knockout mice and analyzed by immunoblots. RESULTS: Nox4-/- mice and WT mice developed liver tumors within 9 months after administration of DEN, whereas Nox1-/- mice developed 80% fewer tumors, which were 50% smaller than those of WT mice. Nox1ΔHep and Nox1ΔHSC mice developed liver tumors of the same number and size as WT mice, whereas Nox1ΔMac developed fewer and smaller tumors, similar to Nox1-/- mice. After DEN injection, levels of tumor necrosis factor, interleukin 6 (IL6), and phosphorylated signal transducer and activator of transcription 3 were increased in livers from WT, but not Nox1-/- or Nox1ΔMac, mice. Conditioned medium from necrotic hepatocytes induced expression of NOX1 in cultured macrophages, followed by expression of tumor necrosis factor, IL6, and other inflammatory cytokines; this medium did not induce expression of IL6 or cytokines in Nox1ΔMac macrophages. WT mice given DEN followed by ML171 developed fewer and smaller liver tumors than mice given DEN followed by vehicle. CONCLUSIONS: In mice given injections of a liver carcinogen (DEN), expression of NOX1 by macrophages promotes hepatic tumorigenesis by inducing the production of inflammatory cytokines. We propose that upon liver injury, damage-associated molecular patterns released from dying hepatocytes activate liver macrophages to produce cytokines that promote tumor development. Strategies to block NOX1 or these cytokines might be developed to slow hepatocellular carcinoma progression.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/genética , Hepatitis/genética , Hepatocitos/patología , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Macrófagos/enzimología , NADPH Oxidasa 1/genética , NADPH Oxidasa 4/genética , Alarminas/metabolismo , Animales , Carcinoma Hepatocelular/inducido químicamente , Proliferación Celular/fisiología , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Dietilnitrosamina , Inhibidores Enzimáticos/farmacología , Células Estrelladas Hepáticas , Hepatocitos/fisiología , Humanos , Interleucina-6/metabolismo , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 1/metabolismo , Necrosis , Factor de Transcripción STAT3/metabolismo , Carga Tumoral , Factor de Necrosis Tumoral alfa/metabolismo
17.
Stem Cells ; 37(8): 1075-1082, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31033095

RESUMEN

Defining the immune physiology of culture-adapted mesenchymal stromal cells (MSCs) derived from distinct tissue compartments informs their potential utility as pharmaceuticals. Here, we have investigated the comparative immune plasticity of MSCs and hepatic stellate cells (HeSCs) isolated from human and murine bone marrow (BM) and liver, respectively. Although both BM-MSCs and HeSCs share mesenchymal phenotype and overall molecular genetic responses to inflammatory cues, HeSCs differ from BM-MSCs in a meaningful manner. We show that culture-adapted HeSCs express substantially higher levels of hepatocyte growth factor (HGF), matrix metalloproteinase-1, and chemokine (CC motif) ligand 2 (CCL2) than BM-MSCs. Both human BM-MSCs and HeSCs inhibit T-cell proliferation by a shared indoleamine 2,3-dioxygenase (IDO)-dependent mechanism. However, HeSCs are distinct from BM-MSCs by their significant differential expression of HGF, CCL2, IL-8, CCL11, and GMCSF when cocultured with and/or without activated peripheral blood mononuclear cells. We have investigated MSCs and HeSCs derived from murine systems to describe interspecies comparability. Murine BM-MSCs inhibit T-cell proliferation through inducible nitric oxide synthase (iNOS) but not IDO. However, murine HeSCs inhibit T-cell proliferation through a mechanism distinct from either IDO or iNOS. Altogether, these results suggest that although culture-adapted BM-MSCs and HeSCs display a similar phenotype, their secretome and immune plasticity are in part distinct likely mirroring their tissular origins. In addition, the discordance in immune biology between mouse and human sourced HeSC and BM-MSCs speaks to the importance of comparative biology when interrogating rodent systems for human translational insights. Stem Cells 2019;37:1075-1082.


Asunto(s)
Antígenos de Diferenciación/inmunología , Células de la Médula Ósea/inmunología , Regulación de la Expresión Génica/inmunología , Células Estrelladas Hepáticas/inmunología , Células Madre Mesenquimatosas/inmunología , Animales , Células de la Médula Ósea/citología , Línea Celular , Células Estrelladas Hepáticas/citología , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Especificidad de la Especie
18.
Circ Res ; 122(4): 583-590, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29269349

RESUMEN

RATIONALE: Myocardial infarction is a major cause of adult mortality worldwide. The origin(s) of cardiac fibroblasts that constitute the postinfarct scar remain controversial, in particular the potential contribution of bone marrow lineages to activated fibroblasts within the scar. OBJECTIVE: The aim of this study was to establish the origin(s) of infarct fibroblasts using lineage tracing and bone marrow transplants and a robust marker for cardiac fibroblasts, the Collagen1a1-green fluorescent protein reporter. METHODS AND RESULTS: Using genetic lineage tracing or bone marrow transplant, we found no evidence for collagen-producing fibroblasts derived from hematopoietic or bone marrow lineages in hearts subjected to permanent left anterior descending coronary artery ligation. In fact, fibroblasts within the infarcted area were largely of epicardial origin. Intriguingly, collagen-producing fibrocytes from hematopoietic lineages were observed attached to the epicardial surface of infarcted and sham-operated hearts in which a suture was placed around the left anterior descending coronary artery. CONCLUSIONS: In this controversial field, our study demonstrated that the vast majority of infarct fibroblasts were of epicardial origin and not derived from bone marrow lineages, endothelial-to-mesenchymal transition, or blood. We also noted the presence of collagen-producing fibrocytes on the epicardial surface that resulted at least in part from the surgical procedure.


Asunto(s)
Células de la Médula Ósea/citología , Linaje de la Célula , Infarto del Miocardio/terapia , Miofibroblastos/citología , Animales , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea/efectos adversos , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Pericardio/citología
19.
J Hepatol ; 71(3): 573-585, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31071368

RESUMEN

BACKGROUND & AIMS: Chronic liver injury often results in the activation of hepatic myofibroblasts and the development of liver fibrosis. Hepatic myofibroblasts may originate from 3 major sources: hepatic stellate cells (HSCs), portal fibroblasts (PFs), and fibrocytes, with varying contributions depending on the etiology of liver injury. Here, we assessed the composition of hepatic myofibroblasts in multidrug resistance gene 2 knockout (Mdr2-/-) mice, a genetic model that resembles primary sclerosing cholangitis in patients. METHODS: Mdr2-/- mice expressing a collagen-GFP reporter were analyzed at different ages. Hepatic non-parenchymal cells isolated from collagen-GFP Mdr2-/- mice were sorted based on collagen-GFP and vitamin A. An NADPH oxidase (NOX) 1/4 inhibitor was administrated to Mdr2-/- mice aged 12-16 weeks old to assess the therapeutic approach of targeting oxidative stress in cholestatic injury. RESULTS: Thy1+ activated PFs accounted for 26%, 51%, and 54% of collagen-GFP+ myofibroblasts in Mdr2-/- mice at 4, 8, and 16 weeks of age, respectively. The remaining collagen-GFP+ myofibroblasts were composed of activated HSCs, suggesting that PFs and HSCs are both activated in Mdr2-/- mice. Bone-marrow-derived fibrocytes minimally contributed to liver fibrosis in Mdr2-/- mice. The development of cholestatic liver fibrosis in Mdr2-/- mice was associated with early recruitment of Gr1+ myeloid cells and upregulation of pro-inflammatory cytokines (4 weeks). Administration of a NOX inhibitor to 12-week-old Mdr2-/- mice suppressed the activation of myofibroblasts and attenuated the development of cholestatic fibrosis. CONCLUSIONS: Activated PFs and activated HSCs contribute to cholestatic fibrosis in Mdr2-/- mice, and serve as targets for antifibrotic therapy. LAY SUMMARY: Activated portal fibroblasts and hepatic stellate cells, but not fibrocytes, contributed to the production of the fibrous scar in livers of Mdr2-/- mice, and these cells can serve as targets for antifibrotic therapy in cholestatic injury. Therapeutic inhibition of the enzyme NADPH oxidase (NOX) in Mdr2-/- mice reversed cholestatic fibrosis, suggesting that targeting NOXs may be an effective strategy for the treatment of cholestatic fibrosis.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Fibroblastos/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática Biliar/metabolismo , Vena Porta/patología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática Biliar/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirazolonas , Piridinas/farmacología , Piridinas/uso terapéutico , Piridonas , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
20.
Hepatology ; 68(3): 1070-1086, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29572892

RESUMEN

Chronic liver disease mediated by activation of hepatic stellate cells (HSCs) and Kupffer cells (KCs) leads to liver fibrosis. Here, we aimed to investigate the molecular mechanism and define the cell type involved in mediating the sphingosine kinase (SphK)1-dependent effect on liver fibrosis. The levels of expression and activity of SphK1 were significantly increased in fibrotic livers compared with the normal livers in human. SphK1 was coexpressed with a range of HSC/KC markers including desmin, α-smooth muscle actin (α-SMA) and F4/80 in fibrotic liver. Deficiency of SphK1 (SphK1-/- ) resulted in a marked amelioration of hepatic injury, including transaminase activities, histology, collagen deposition, α-SMA and inflammation, in CCl4 or bile duct ligation (BDL)-induced mice. Likewise, treatment with a specific inhibitor of SphK1, 5C, also significantly prevented liver injury and fibrosis in mice induced by CCl4 or BDL. In cellular levels, inhibition of SphK1 significantly blocked the activation and migration of HSCs and KCs. Moreover, SphK1 knockout in KCs reduced the secretion of CCL2, and SphK1 knockout in HSCs reduced C-C motif chemokine receptor 2 ([CCR2] CCL2 receptor) expression in HSCs. CCL2 in SphK1-/- mice was lower whereas microRNA-19b-3p in SphK1-/- mice was higher compared with wild-type (WT) mice. Furthermore, microRNA-19b-3p downregulated CCR2 in HSCs. The functional effect of SphK1 in HSCs on liver fibrosis was further strengthened by the results of animal experiments using a bone marrow transplantation (BMT) method. CONCLUSION: SphK1 has distinct roles in the activation of KCs and HSCs in liver fibrosis. Mechanistically, SphK1 in KCs mediates CCL2 secretion, and SphK1 in HSCs upregulates CCR2 by downregulation of miR-19b-3p. (Hepatology 2018).


Asunto(s)
Cirrosis Hepática/etiología , MicroARNs/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptores CCR2/metabolismo , Animales , Trasplante de Médula Ósea , Quimiocina CCL2/metabolismo , Células Estrelladas Hepáticas/enzimología , Humanos , Macrófagos del Hígado/metabolismo , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA