Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 74(4): 831-843.e4, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31027880

RESUMEN

The activity of the tumor suppressor p53 has to be timed and balanced closely to prevent untimely induction of cell death. The stability of p53 depends on the ubiquitin ligase Mdm2 but also on Hsp70 and Hsp90 chaperones that interact with its DNA binding domain (DBD). Using hydrogen exchange mass spectrometry and biochemical methods, we analyzed conformational states of wild-type p53-DBD at physiological temperatures and conformational perturbations in three frequent p53 cancer mutants. We demonstrate that the Hsp70/Hdj1 system shifts the conformational equilibrium of p53 toward a flexible, more mutant-like, DNA binding inactive state by binding to the DNA binding loop. The analyzed cancer mutants are likewise destabilized by interaction with the Hsp70/Hdj1 system. In contrast, Hsp90 protects the DBD of p53 wild-type and mutant proteins from unfolding. We propose that the Hsp70 and Hsp90 chaperone systems assume complementary functions to optimally balance conformational plasticity with conformational stability.


Asunto(s)
Proteínas del Choque Térmico HSP40/química , Neoplasias/genética , Conformación Proteica , Proteína p53 Supresora de Tumor/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Humanos , Espectrometría de Masas , Chaperonas Moleculares , Neoplasias/patología , Dominios Proteicos/genética , Desplegamiento Proteico , Proteína p53 Supresora de Tumor/genética
2.
Mol Cell ; 69(2): 227-237.e4, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29290615

RESUMEN

Efficient targeting of Hsp70 chaperones to substrate proteins depends on J-domain cochaperones, which in synergism with substrates trigger ATP hydrolysis in Hsp70s and concomitant substrate trapping. We present the crystal structure of the J-domain of Escherichia coli DnaJ in complex with the E. coli Hsp70 DnaK. The J-domain interacts not only with DnaK's nucleotide-binding domain (NBD) but also with its substrate-binding domain (SBD) and packs against the highly conserved interdomain linker. Mutational replacement of contacts between J-domain and SBD strongly reduces the ability of substrates to stimulate ATP hydrolysis in the presence of DnaJ and compromises viability at heat shock temperatures. Our data demonstrate that the J-domain and the substrate do not deliver completely independent signals for ATP hydrolysis, but the J-domain, in addition to its direct influence on Hsp70s catalytic center, makes Hsp70 more responsive for the hydrolysis-inducing signal of the substrate, resulting in efficient substrate trapping.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/ultraestructura , Proteínas HSP70 de Choque Térmico/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/fisiología , Proteínas HSP70 de Choque Térmico/ultraestructura , Proteínas de Choque Térmico/metabolismo , Hidrólisis , Cinética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Dominios Proteicos/fisiología
3.
Mol Cell ; 70(3): 545-552.e9, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706537

RESUMEN

Protein folding in the cell requires ATP-driven chaperone machines such as the conserved Hsp70 and Hsp90. It is enigmatic how these machines fold proteins. Here, we show that Hsp90 takes a key role in protein folding by breaking an Hsp70-inflicted folding block, empowering protein clients to fold on their own. At physiological concentrations, Hsp70 stalls productive folding by binding hydrophobic, core-forming segments. Hsp90 breaks this deadlock and restarts folding. Remarkably, neither Hsp70 nor Hsp90 alters the folding rate despite ensuring high folding yields. In fact, ATP-dependent chaperoning is restricted to the early folding phase. Thus, the Hsp70-Hsp90 cascade does not fold proteins, but instead prepares them for spontaneous, productive folding. This stop-start mechanism is conserved from bacteria to man, assigning also a general function to bacterial Hsp90, HtpG. We speculate that the decreasing hydrophobicity along the Hsp70-Hsp90 cascade may be crucial for enabling spontaneous folding.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Escherichia coli/metabolismo , Luciérnagas/metabolismo , Humanos , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(48): e2123238119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409905

RESUMEN

The 70 kDa heat shock proteins (Hsp70s) are highly versatile molecular chaperones that assist in a wide variety of protein-folding processes. They exert their functions by continuously cycling between states of low and high affinity for client polypeptides, driven by ATP-binding and hydrolysis. This cycling is tuned by cochaperones and clients. Although structures for the high and low client affinity conformations of Hsp70 and Hsp70 domains in complex with various cochaperones and peptide clients are available, it is unclear how structural rearrangements in the presence of cochaperones and clients are orchestrated in space and time. Here, we report insights into the conformational dynamics of the prokaryotic model Hsp70 DnaK throughout its adenosine-5'-triphosphate hydrolysis (ATPase) cycle using proximity-induced fluorescence quenching. Our data suggest that ATP and cochaperone-induced structural rearrangements in DnaK occur in a sequential manner and resolve hitherto unpredicted cochaperone and client-induced structural rearrangements. Peptides induce large conformational changes in DnaK·ATP prior to ATP hydrolysis, whereas a protein client induces significantly smaller changes but is much more effective in stimulating ATP hydrolysis. Analysis of the enthalpies of activation for the ATP-induced opening of the DnaK lid in the presence of clients indicates that the lid does not exert an enthalpic pulling force onto bound clients, suggesting entropic pulling as a major mechanism for client unfolding. Our data reveal important insights into the mechanics, allostery, and dynamics of Hsp70 chaperones. We established a methodology for understanding the link between dynamics and function, Hsp70 diversity, and activity modulation.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Escherichia coli , Humanos , Adenosina Trifosfatasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfato/metabolismo
5.
Nature ; 539(7629): 448-451, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27783598

RESUMEN

The Hsp70 system is a central hub of chaperone activity in all domains of life. Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins. Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid. However, it has been difficult to test directly how Hsp70 interacts with protein substrates in different stages of folding and how it affects their structure. Moreover, recent indications of diverse lid conformations in Hsp70-substrate complexes raise the possibility of additional interaction mechanisms. Addressing these issues is technically challenging, given the conformational dynamics of both chaperone and client, the transient nature of their interaction, and the involvement of co-chaperones and the ATP hydrolysis cycle. Here, using optical tweezers, we show that the bacterial Hsp70 homologue (DnaK) binds and stabilizes not only extended peptide segments, but also partially folded and near-native protein structures. The Hsp70 lid and groove act synergistically when stabilizing folded structures: stabilization is abolished when the lid is truncated and less efficient when the groove is mutated. The diversity of binding modes has important consequences: Hsp70 can both stabilize and destabilize folded structures, in a nucleotide-regulated manner; like Hsp90 and GroEL, Hsp70 can affect the late stages of protein folding; and Hsp70 can suppress aggregation by protecting partially folded structures as well as unfolded protein chains. Overall, these findings in the DnaK system indicate an extension of the Hsp70 canonical model that potentially affects a wide range of physiological roles of the Hsp70 system.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Pliegue de Proteína , Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Pinzas Ópticas , Agregado de Proteínas , Unión Proteica , Conformación Proteica , Desnaturalización Proteica , Replegamiento Proteico , Estabilidad Proteica , Imagen Individual de Molécula , Especificidad por Sustrato
6.
Mol Cell ; 48(6): 863-74, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23123194

RESUMEN

Central to the chaperone function of Hsp70s is the transition between open and closed conformations of their polypeptide substrate binding domain (SBD), which is regulated through an allosteric mechanism via ATP binding and hydrolysis in their nucleotide binding domain (NBD). Although the structure of the closed conformation of Hsp70s is well studied, the open conformation has remained elusive. Here, we report on the 2.4 Å crystal structure of the ATP-bound open conformation of the Escherichia coli Hsp70 homolog DnaK. In the open DnaK structure, the ß sheet and α-helical lid subdomains of the SBD are detached from one another and docked to different faces of the NBD. The contacts between the ß sheet subdomain and the NBD reveal the mechanism of allosteric regulation. In addition, we demonstrate that docking of the ß sheet and α-helical lid subdomains to the NBD is a sequential process influenced by peptide and protein substrates.


Asunto(s)
Adenosina Trifosfato/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas HSP70 de Choque Térmico/química , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Enlace de Hidrógeno , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Homología Estructural de Proteína
7.
Nat Struct Mol Biol ; 25(1): 83-89, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29323280

RESUMEN

Protein quality control depends on the tight regulation of interactions between molecular chaperones and polypeptide substrates. Substrate release from the chaperone Hsp70 is triggered by nucleotide-exchange factors (NEFs) that control folding and degradation fates via poorly understood mechanisms. We found that the armadillo-type NEFs budding yeast Fes1 and its human homolog HspBP1 employ flexible N-terminal release domains (RDs) with substrate-mimicking properties to ensure the efficient release of persistent substrates from Hsp70. The RD contacts the substrate-binding domain of the chaperone, competes with peptide substrate for binding and is essential for proper function in yeast and mammalian cells. Thus, the armadillo domain engages Hsp70 to trigger nucleotide exchange, whereas the RD safeguards the release of substrates. Our findings provide fundamental mechanistic insight into the functional specialization of Hsp70 NEFs and have implications for the understanding of proteostasis-related disorders, including Marinesco-Sjögren syndrome.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas HSP70 de Choque Térmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfato/química , Proteínas de Unión al ADN/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Nucleótidos/metabolismo , Fenotipo , Desnaturalización Proteica , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
8.
Nat Commun ; 7: 13695, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917864

RESUMEN

Hsp70 chaperones assist de novo folding of newly synthesized proteins in all cells. In yeast, the specialized Hsp70 Ssb directly binds to ribosomes. The structural basis and functional mode of recruitment of Ssb to ribosomes is not understood. Here, we present the molecular details underlying ribosome binding of Ssb in Saccharomyces cerevisiae. This interaction is multifaceted, involving the co-chaperone RAC and two specific regions within Ssb characterized by positive charges. The C-terminus of Ssb mediates the key contact and a second attachment point is provided by a KRR-motif in the substrate binding domain. Strikingly, ribosome binding of Ssb is not essential. Autonomous ribosome attachment becomes necessary if RAC is absent, suggesting a dual mode of Ssb recruitment to nascent chains. We propose, that the multilayered ribosomal interaction allows positioning of Ssb in an optimal orientation to the tunnel exit guaranteeing an efficient nascent polypeptide interaction.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Péptidos/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Simulación por Computador , Secuencia Conservada , Prueba de Complementación Genética , Pleiotropía Genética , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Modelos Moleculares , Mutación/genética , Fenotipo , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
9.
Front Mol Biosci ; 2: 58, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26539440

RESUMEN

Hsp70s chaperone an amazing number and variety of cellular protein folding processes. Key to their versatility is the recognition of a short degenerate sequence motif, present in practically all polypeptides, and a bidirectional allosteric intramolecular regulation mechanism linking their N-terminal nucleotide binding domain (NBD) and their C-terminal polypeptide substrate binding domain (SBD). Through this interdomain communication ATP binding to the NBD and ATP hydrolysis control the affinity of the SBD for polypeptide substrates and substrate binding to the SBD triggers ATP hydrolysis. Genetic screens for defective variants of Hsp70s and systematic analysis of available structures of the isolated domains revealed some residues involved in allosteric control. Recent elucidation of the crystal structure of the Hsp70 homolog DnaK in the ATP bound open conformation as well as numerous NMR and mutagenesis studies bring us closer to an understanding of the communication between NBD and SBD. In this review we will discuss our current view of the allosteric control mechanism of Hsp70 chaperones.

10.
Nat Commun ; 6: 8308, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26383706

RESUMEN

Central to the protein folding activity of Hsp70 chaperones is their ability to interact with protein substrates in an ATP-controlled manner, which relies on allosteric regulation between their nucleotide-binding (NBD) and substrate-binding domains (SBD). Here we dissect this mechanism by analysing mutant variants of the Escherichia coli Hsp70 DnaK blocked at distinct steps of allosteric communication. We show that the SBD inhibits ATPase activity by interacting with the NBD through a highly conserved hydrogen bond network, and define the signal transduction pathway that allows bound substrates to trigger ATP hydrolysis. We identify variants deficient in only one direction of allosteric control and demonstrate that ATP-induced substrate release is more important for chaperone activity than substrate-stimulated ATP hydrolysis. These findings provide evidence of an unexpected dichotomic allostery mechanism in Hsp70 chaperones and provide the basis for a comprehensive mechanical model of allostery in Hsp70s.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Regulación Alostérica , Sitios de Unión , Dicroismo Circular , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Mutagénesis Sitio-Dirigida
11.
Chem Biol ; 22(1): 87-97, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25544045

RESUMEN

The highly conserved 70 kDa heat shock proteins (Hsp70) play an integral role in proteostasis such that dysregulation has been implicated in numerous diseases. Elucidating the precise role of Hsp70 family members in the cellular context, however, has been hampered by the redundancy and intricate regulation of the chaperone network, and relatively few selective and potent tools. We have characterized a natural product, novolactone, that targets cytosolic and ER-localized isoforms of Hsp70 through a highly conserved covalent interaction at the interface between the substrate-binding and ATPase domains. Biochemical and structural analyses indicate that novolactone disrupts interdomain communication by allosterically inducing a conformational change in the Hsp70 protein to block ATP-induced substrate release and inhibit refolding activities. Thus, novolactone is a valuable tool for exploring the requirements of Hsp70 chaperones in diverse cellular contexts.


Asunto(s)
Abietanos/metabolismo , Productos Biológicos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Abietanos/química , Adenosina Trifosfatasas/metabolismo , Regulación Alostérica , Sitios de Unión , Productos Biológicos/química , Línea Celular , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Genoma Fúngico , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/química , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA