Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8015): 77-83, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750367

RESUMEN

Intensity, polarization and wavelength are intrinsic characteristics of light. Characterizing light with arbitrarily mixed information on polarization and spectrum is in high demand1-4. Despite the extensive efforts in the design of polarimeters5-18 and spectrometers19-27, concurrently yielding high-dimensional signatures of intensity, polarization and spectrum of the light fields is challenging and typically requires complicated integration of polarization- and/or wavelength-sensitive elements in the space or time domains. Here we demonstrate that simple thin-film interfaces with spatial and frequency dispersion can project and tailor polarization and spectrum responses in the wavevector domain. By this means, high-dimensional light information can be encoded into single-shot imaging and deciphered with the assistance of a deep residual network. To the best of our knowledge, our work not only enables full characterization of light with arbitrarily mixed full-Stokes polarization states across a broadband spectrum with a single device and a single measurement but also presents comparable, if not better, performance than state-of-the-art single-purpose miniaturized polarimeters or spectrometers. Our approach can be readily used as an alignment-free retrofit for the existing imaging platforms, opening up new paths to ultra-compact and high-dimensional photodetection and imaging.

2.
Nature ; 613(7944): 474-478, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653568

RESUMEN

Photons with spin angular momentum possess intrinsic chirality, which underpins many phenomena including nonlinear optics1, quantum optics2, topological photonics3 and chiroptics4. Intrinsic chirality is weak in natural materials, and recent theoretical proposals5-7 aimed to enlarge circular dichroism by resonant metasurfaces supporting bound states in the continuum that enhance substantially chiral light-matter interactions. Those insightful works resort to three-dimensional sophisticated geometries, which are too challenging to be realized for optical frequencies8. Therefore, most of the experimental attempts9-11 showing strong circular dichroism rely on false/extrinsic chirality by using either oblique incidence9,10 or structural anisotropy11. Here we report on the experimental realization of true/intrinsic chiral response with resonant metasurfaces in which the engineered slant geometry breaks both in-plane and out-of-plane symmetries. Our result marks, to our knowledge, the first observation of intrinsic chiral bound states in the continuum with near-unity circular dichroism of 0.93 and a high quality factor exceeding 2,663 for visible frequencies. Our chiral metasurfaces may lead to a plethora of applications in chiral light sources and detectors, chiral sensing, valleytronics and asymmetric photocatalysis.

3.
Nat Mater ; 23(1): 71-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37919349

RESUMEN

Light scattered or radiated from a material carries valuable information on the said material. Such information can be uncovered by measuring the light field at different angles and frequencies. However, this technique typically requires a large optical apparatus, hampering the widespread use of angle-resolved spectroscopy beyond the lab. Here we demonstrate compact angle-resolved spectral imaging by combining a tunable metasurface-based spectrometer array and a metalens. With this approach, even with a miniaturized spectrometer footprint of only 4 × 4 µm2, we demonstrate a wavelength accuracy of 0.17 nm, spectral resolution of 0.4 nm and a linear dynamic range of 149 dB. Moreover, our spectrometer has a detection limit of 1.2 fJ, and can be patterned to an array for spectral imaging. Placing such a spectrometer array directly at the back focal plane of a metalens, we achieve an angular resolution of 4.88 × 10-3 rad. Our angle-resolved spectrometers empowered by metalenses can be employed towards enhancing advanced optical imaging and spectral analysis applications.

4.
Nano Lett ; 24(29): 9027-9033, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38984823

RESUMEN

We study, both theoretically and experimentally, strong interaction between a quasi-bound state in the continuum (QBIC) supported by a resonant metasurface with an epsilon-near-zero (ENZ) guided mode excited in an ultrathin ITO layer. We observe and quantify the strong coupling regime of the QBIC-ENZ interaction in the hybrid metasurface manifested through the mode splitting over 200 meV. We also measure experimentally the resonant nonlinear response enhanced near the ENZ frequency and observe the effective nonlinear refractive index up to ∼4 × 10-13 m2/W in the ITO-integrated dielectric nanoresonators, which provides a promising platform for low-power nonlinear photonic devices.

5.
Nano Lett ; 24(9): 2758-2764, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407023

RESUMEN

Meta-atoms are the building blocks of metamaterials, which are employed to control both generation and propagation of light as well as provide novel functionalities of localization and directivity of electromagnetic radiation. In many cases, simple dielectric or metallic resonators are employed as meta-atoms to create different types of electromagnetic metamaterials. Here, we fabricate and study supercrystal meta-atoms composed of coupled perovskite quantum dots. We reveal that these multiscale structures exhibit specific emission properties, such as spectrum splitting and polaritonic effects. We believe that such multiscale supercrystal meta-atoms will provide novel functionalities in the design of many novel types of active metamaterials and metasurfaces.

6.
Nano Lett ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041646

RESUMEN

Chiral nanostructures allow engineering of chiroptical responses; however, their design usually relies on empirical approaches and extensive numerical simulations. It remains unclear if a general strategy exists to enhance and maximize the intrinsic chirality of subwavelength photonic structures. Here, we suggest a microscopic theory and uncover the origin of strong chiral responses of resonant nanostructures. We reveal that the reactive helicity density is critically important for achieving maximum chirality at resonances. We demonstrate our general concept on the examples of planar photonic crystal slabs and metasurfaces, where out-of-plane mirror symmetry is broken by a bilayer design. Our findings provide a general recipe for designing photonic structures with maximum chirality, paving the way toward many applications, including chiral sensing, chiral emitters and detectors, and chiral quantum optics.

7.
Phys Rev Lett ; 132(4): 043803, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335352

RESUMEN

We introduce the concept of photonic flatband resonances and demonstrate it for an array of high-index dielectric particles. We employ the multiple Mie scattering theory and demonstrate that both short- and long-range interactions between the resonators are crucial for the emerging collective resonances and their associated photonic flatbands. By examining both near- and far-field characteristics, we uncover how the flatbands emerge due to a fine tuning of resonators' radiation fields, and predict that hybridization of a flatband resonance with an electric hot spot can lead to giant values of the Purcell factor for the electric dipolar emitters.

8.
Chem Rev ; 122(19): 15414-15449, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35549165

RESUMEN

Future technologies underpinning multifunctional physical and chemical systems and compact biological sensors will rely on densely packed transformative and tunable circuitry employing nanophotonics. For many years, plasmonics was considered as the only available platform for subwavelength optics, but the recently emerged field of resonant metaphotonics may provide a versatile practical platform for nanoscale science by employing resonances in high-index dielectric nanoparticles and metasurfaces. Here, we discuss the recently emerged field of metaphotonics and describe its connection to material science and chemistry. For tunabilty, metaphotonics employs a variety of the recently highlighted materials such as polymers, perovskites, transition metal dichalcogenides, and phase change materials. This allows to achieve diverse functionalities of metasystems and metasurfaces for efficient spatial and temporal control of light by employing multipolar resonances and the physics of bound states in the continuum. We anticipate expanding applications of these concepts in nanolasers, tunable metadevices, metachemistry, as well as a design of a new generation of chemical and biological ultracompact sensing devices.


Asunto(s)
Nanopartículas , Nanotecnología , Ciencia de los Materiales , Óptica y Fotónica , Polímeros
9.
Chaos ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38572948

RESUMEN

We study numerically nonlinear dynamics of several types of molecular systems composed of hydrogen-bonded chains placed inside carbon nanotubes with open edges. We demonstrate that carbon nanotubes provide a stabilization mechanism for quasi-one-dimensional molecular chains via the formation of their secondary structures. In particular, a polypeptide chain (Gly)N placed inside a carbon nanotube can form a stable helical chain (310-, α-, π-, and ß-helix) with parallel chains of hydrogen-bonded peptide groups. A chain of hydrogen fluoride molecules ⋯FH⋯FH⋯FH can form a hydrogen-bonded zigzag chain. Remarkably, we demonstrate that for molecular complexes (Gly)N∈CNT and (FH)N∈CNT, the hydrogen-bonded chains will remain stable even at T=500 K. Thus, our results suggest that the use of carbon nanotubes with encapsulated hydrogen fluoride molecules may be important for the realization of high proton conductivity at high temperatures.

10.
Nano Lett ; 23(6): 2228-2232, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36946059

RESUMEN

We demonstrate the effect of spin-momentum locking of upconversion photoluminescence emitted from rare-earth doped nanocrystals coupled to a phase-gradient dielectric metasurface. We observe different directionalities for left and right circular polarized light and associate this experimental observation with the photonic Rashba effect realized for upconverted photoluminescence that is manifested in the spin-dependent splitting of emitted light in the momentum space.

11.
Nano Lett ; 23(7): 2651-2658, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36946720

RESUMEN

Breaking the in-plane geometric symmetry of dielectric metasurfaces allows us to access a set of electromagnetic states termed symmetry-protected quasi-bound states in the continuum (qBICs). Here we demonstrate that qBICs can also be accessed by a symmetry breaking in the permittivity of the comprising materials. While the physical size of atoms imposes a limit on the lowest achievable geometrical asymmetry, weak permittivity modulations due to carrier doping, and electro-optical Pockels and Kerr effects, usually considered insignificant, open the possibility of infinitesimal permittivity asymmetries for on-demand, dynamically tunable resonances of extremely high quality factors. As a proof-of-principle, we probe the excitation of permittivity-asymmetric qBICs (ε-qBICs) using a prototype Si/TiO2 metasurface, in which the asymmetry in the unit cell is provided by the permittivity contrast of the materials. ε-qBICs are also numerically demonstrated in 1D gratings, where quality-factor enhancement and tailored interference phenomena of qBICs are shown via the interplay of geometrical and permittivity asymmetries.

12.
Phys Rev Lett ; 131(10): 103604, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37739358

RESUMEN

Topological phases play a crucial role in the fundamental physics of light-matter interaction and emerging applications of quantum technologies. However, the topological band theory of waveguide QED systems is known to break down, because the energy bands become disconnected. Here, we introduce a concept of the inverse energy band and explore analytically topological scattering in a waveguide with an array of quantum emitters. We uncover a rich structure of topological phase transitions, symmetric scale-free localization, completely flat bands, and the corresponding dark Wannier states. Although bulk-edge correspondence is partially broken because of radiative decay, we prove analytically that the scale-free localized states are distributed in a single inverse energy band in the topological phase and in two inverse bands in the trivial phase. Surprisingly, the winding number of the scattering textures depends on both the topological phase of inverse subradiant band and the odevity of the cell number. Our Letter uncovers the field of the topological inverse bands, and it brings a novel vision to topological phases in light-matter interactions.

13.
Phys Rev Lett ; 130(24): 243802, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37390434

RESUMEN

Optically induced mechanical torque driving rotation of small objects requires the presence of absorption or breaking cylindrical symmetry of a scatterer. A spherical nonabsorbing particle cannot rotate due to the conservation of the angular momentum of light upon scattering. Here, we suggest a novel physical mechanism for the angular momentum transfer to nonabsorbing particles via nonlinear light scattering. The breaking of symmetry occurs at the microscopic level manifested in nonlinear negative optical torque due to the excitation of resonant states at the harmonic frequency with higher projection of angular momentum. The proposed physical mechanism can be verified with resonant dielectric nanostructures, and we suggest some specific realizations.


Asunto(s)
Nanoestructuras , Torque , Movimiento (Física)
14.
J Chem Phys ; 159(21)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38054512

RESUMEN

We employ the molecular dynamics simulations to study the dynamics of acetanilide (ACN) molecules placed on a flat surface of planar multilayer hexagonal boron nitride. We demonstrate that the ACN molecules, known to be achiral in the three-dimensional space, become chiral after being placed on the substrate. Homochirality of the ACN molecules leads to stable secondary structures stabilized by hydrogen bonds between peptide groups of the molecules. By employing molecular dynamics simulations, we reveal that the structure of the resulting hydrogen-bond chains depends on the isomeric composition of the molecules. If all molecules are homochiral (i.e., with only one isomer being present), they form secondary structures (chains of hydrogen bonds in the shapes of arcs, circles, and spirals). If the molecules at the substrate form a racemic mixture, then no regular secondary structures appear, and only curvilinear chains of hydrogen bonds of random shapes emerge. A hydrogen-bond chain can form a zigzag array only if it has an alternation of isomers. Such chains can create two-dimensional (2D) regular lattices or 2D crystals. The melting scenarios of such 2D crystals depend on density of its coverage of the substrate. At 25% coverage, melting occurs continuously in the temperature interval 295-365 K. For a complete coverage, melting occurs at 415-470 K due to a shift of 11% of all molecules into the second layer of the substrate.

15.
Nano Lett ; 22(10): 4200-4206, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35561257

RESUMEN

Multiphoton processes of absorption photoluminescence have enabled a wide range of applications including three-dimensional microfabrication, data storage, and biological imaging. While the applications of two-photon and three-photon absorption and luminescence have matured considerably, higher-order photoluminescence processes remain more challenging to study due to their lower efficiency, particularly in subwavelength systems. Here, we report the observation of five-photon luminescence from a single subwavelength nanoantenna at room temperature enabled by the Mie resonances. We excite an AlGaAs resonator at around 3.6 µm and observe photoluminescence at around 740 nm. We show that the interplay of the Mie multipolar modes at the subwavelength scale can enhance the efficiency of the five-photon luminescence by at least 4 orders of magnitude, being limited only by sensitivity of our detector. Our work paves the way toward applications of higher-order multiphoton processes at the subwavelength scales enabled by the physics of Mie resonances.


Asunto(s)
Luminiscencia , Fotones
16.
Nano Lett ; 21(13): 5461-5474, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34157842

RESUMEN

The full manipulation of intrinsic properties of electromagnetic waves has become the central target in various modern optical technologies. Optical metasurfaces have been suggested for a complete control of light-matter interaction with subwavelength structures, and they have been explored widely in the past decade for creating next-generation multifunctional flat-optics devices. The current studies of metasurfaces have reached a mature stage where common materials, basic optical physics, and conventional engineering tools have been explored extensively for various applications such as light bending, metalenses, metaholograms, and many others. A natural question is where the future research on metasurfaces will be going: Quo vadis, metasurfaces? In this Mini Review, we provide perspectives on the future developments of optical metasurfaces. Specifically, we highlight recent progresses on hybrid metasurfaces employing low-dimensional materials and discuss biomedical, computational, and quantum applications of metasurfaces, followed by discussions of challenges and foreseeing the future of metasurface physics and engineering.


Asunto(s)
Óptica y Fotónica
17.
Nano Lett ; 21(2): 1090-1095, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33439662

RESUMEN

Metamaterial-based perfect absorbers provide efficient ways for selective absorption of light with both linear or circular polarizations. Perfect absorption for an arbitrary polarization requires the development of subwavelength structures absorbing efficiently elliptically polarized light, but they remain largely unexplored. Here, we design and realize experimentally novel plasmonic metasurfaces for full-Stokes polarization perfect absorption in the mid-infrared. The metasurface unit cell consists of coupled anisotropic meta-atoms forming a diatomic metamolecule. The designed plasmonic metastructures provide a strong field enhancement by at least 1 order of magnitude higher than conventional perfect absorbers. In experiment, our plasmonic metasurfaces demonstrate sharp differentiation of spectral responses for an arbitrary pair of orthogonal polarization states (linear, circular, or elliptical) providing perfect absorption for one polarization with strong reflection for its counterpart. Our results suggest a novel route for efficient control of light polarization in metasurfaces offering numerous potential applications ranging from thermal imaging to chiral molecule detection.

18.
Nano Lett ; 21(17): 7191-7197, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34428057

RESUMEN

Multiphoton absorption and luminescence are fundamentally important nonlinear processes for utilizing efficient light-matter interaction. Resonant enhancement of nonlinear processes has been demonstrated for many nanostructures; however, it is believed that all higher-order processes are always much weaker than their corresponding linear processes. Here, we study multiphoton luminescence from structured surfaces and, combining multiple advantages of perovskites with the concept of metasurfaces, we demonstrate that the efficiency of nonlinear multiphoton processes can become comparable to the efficiency of the linear process. We reveal that the perovskite metasurface can enhance substantially two-photon stimulated emission with the threshold being comparable with that of the one-photon process. Our modeling of free-carrier dynamics and exciton recombination upon nonlinear photoexcitation uncovers that this effect can be attributed to the local field enhancement in structured media, a substantial increase of the mode overlap, and the selection rules of two-photon absorption in perovskites.

19.
Nano Lett ; 21(11): 4592-4597, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34008406

RESUMEN

Topological states of light represent counterintuitive optical modes localized at boundaries of finite-size optical structures that originate from the properties of the bulk. Being defined by bulk properties, such boundary states are insensitive to certain types of perturbations, thus naturally enhancing robustness of photonic circuitries. Conventionally, the N-dimensional bulk modes correspond to (N - 1)-dimensional boundary states. The higher-order bulk-boundary correspondence relates N-dimensional bulk to boundary states with dimensionality reduced by more than 1. A special interest lies in miniaturization of such higher-order topological states to the nanoscale. Here, we realize nanoscale topological corner states in metasurfaces with C6-symmetric honeycomb lattices. We directly observe nanoscale topology-empowered edge and corner localizations of light and enhancement of light-matter interactions via a nonlinear imaging technique. Control of light at the nanoscale empowered by topology may facilitate miniaturization and on-chip integration of classical and quantum photonic devices.

20.
Nano Lett ; 21(10): 4381-4387, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33983751

RESUMEN

We studied the nonlinear response of a dimer composed of two identical Mie-resonant dielectric nanoparticles illuminated normally by a circularly polarized light. We developed a general theory describing hybridization of multipolar modes of the coupled nanoparticles and reveal nonvanishing nonlinear circular dichroism (CD) in the second-harmonic generation (SHG) signal enhanced by the multipolar resonances in the dimer, provided its axis is oriented under an angle to the crystalline lattice of the dielectric material. We supported our multipolar hybridization theory by experimental results obtained for the AlGaAs dimers placed on an engineered substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA