Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
PLoS Genet ; 17(7): e1009679, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34324492

RESUMEN

Numerous genetic studies have established a role for rare genomic variants in Congenital Heart Disease (CHD) at the copy number variation (CNV) and de novo variant (DNV) level. To identify novel haploinsufficient CHD disease genes, we performed an integrative analysis of CNVs and DNVs identified in probands with CHD including cases with sporadic thoracic aortic aneurysm. We assembled CNV data from 7,958 cases and 14,082 controls and performed a gene-wise analysis of the burden of rare genomic deletions in cases versus controls. In addition, we performed variation rate testing for DNVs identified in 2,489 parent-offspring trios. Our analysis revealed 21 genes which were significantly affected by rare CNVs and/or DNVs in probands. Fourteen of these genes have previously been associated with CHD while the remaining genes (FEZ1, MYO16, ARID1B, NALCN, WAC, KDM5B and WHSC1) have only been associated in small cases series or show new associations with CHD. In addition, a systems level analysis revealed affected protein-protein interaction networks involved in Notch signaling pathway, heart morphogenesis, DNA repair and cilia/centrosome function. Taken together, this approach highlights the importance of re-analyzing existing datasets to strengthen disease association and identify novel disease genes and pathways.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Haploinsuficiencia/genética , Cardiopatías Congénitas/genética , Bases de Datos Genéticas , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Predisposición Genética a la Enfermedad/genética , Genómica/métodos , Humanos , Canales Iónicos/genética , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple/genética , Transcriptoma/genética
3.
Cardiol Young ; 33(5): 681-698, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37102324

RESUMEN

Sudden cardiac death is the most common mode of death during childhood and adolescence in hypertrophic cardiomyopathy, and identifying those individuals at highest risk is a major aspect of clinical care. The mainstay of preventative therapy is the implantable cardioverter-defibrillator, which has been shown to be effective at terminating malignant ventricular arrhythmias in children with hypertrophic cardiomyopathy but can be associated with substantial morbidity. Accurate identification of those children at highest risk who would benefit most from implantable cardioverter-defibrillator implantation while minimising the risk of complications is, therefore, essential. This position statement, on behalf of the Association for European Paediatric and Congenital Cardiology (AEPC), reviews the currently available data on established and proposed risk factors for sudden cardiac death in childhood-onset hypertrophic cardiomyopathy and current approaches for risk stratification in this population. It also provides guidance on identification of individuals at risk of sudden cardiac death and optimal management of implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy.


Asunto(s)
Cardiomiopatía Hipertrófica , Desfibriladores Implantables , Adolescente , Niño , Humanos , Arritmias Cardíacas/etiología , Cardiomiopatía Hipertrófica/terapia , Muerte Súbita Cardíaca/etiología , Factores de Riesgo
4.
Hum Mutat ; 40(8): 1101-1114, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30924982

RESUMEN

Dominant mutations in the MYH7 and MYBPC3 genes are common causes of inherited cardiomyopathies, which often demonstrate variable phenotypic expression and incomplete penetrance across family members. Biallelic inheritance is rare but allows gaining insights into the genetic mode of action of single variants. Here, we present three cases carrying a loss-of-function (LoF) variant in a compound heterozygous state with a missense variant in either MYH7 or MYBPC3 leading to severe cardiomyopathy with left ventricular noncompaction. Most likely, MYH7 haploinsufficiency due to one LoF allele results in a clinical phenotype only in compound heterozygous form with a missense variant. In contrast, haploinsufficiency in MYBPC3 results in a severe early-onset ventricular noncompaction phenotype requiring heart transplantation when combined with a de novo missense variant on the second allele. In addition, the missense variant may lead to an unstable protein, as overall only 20% of the MYBPC3 protein remain detectable in affected cardiac tissue compared to control tissue. In conclusion, in patients with early disease onset and atypical clinical course, biallelic inheritance or more complex variants including copy number variations and de novo mutations should be considered. In addition, the pathogenic consequence of variants may differ in heterozygous versus compound heterozygous state.


Asunto(s)
Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , No Compactación Aislada del Miocardio Ventricular/genética , Mutación con Pérdida de Función , Mutación Missense , Cadenas Pesadas de Miosina/genética , Adolescente , Adulto , Femenino , Haploinsuficiencia , Trasplante de Corazón , Humanos , Lactante , No Compactación Aislada del Miocardio Ventricular/terapia , Masculino , Linaje , Fenotipo , Adulto Joven
5.
Clin Genet ; 96(6): 549-559, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31568572

RESUMEN

The underlying genetic mechanisms and early pathological events of children with primary cardiomyopathy (CMP) are insufficiently characterized. In this study, we aimed to characterize the mutational spectrum of primary CMP in a large cohort of patients ≤18 years referred to a tertiary center. Eighty unrelated index patients with pediatric primary CMP underwent genetic testing with a panel-based next-generation sequencing approach of 89 genes. At least one pathogenic or probably pathogenic variant was identified in 30/80 (38%) index patients. In all CMP subgroups, patients carried most frequently variants of interest in sarcomere genes suggesting them as a major contributor in pediatric primary CMP. In MYH7, MYBPC3, and TNNI3, we identified 18 pathogenic/probably pathogenic variants (MYH7 n = 7, MYBPC3 n = 6, TNNI3 n = 5, including one homozygous (TNNI3 c.24+2T>A) truncating variant. Protein and transcript level analysis on heart biopsies from individuals with homozygous mutation of TNNI3 revealed that the TNNI3 protein is absent and associated with upregulation of the fetal isoform TNNI1. The present study further supports the clinical importance of sarcomeric mutation-not only in adult-but also in pediatric primary CMP. TNNI3 is the third most important disease gene in this cohort and complete loss of TNNI3 leads to severe pediatric CMP.


Asunto(s)
Cardiomiopatías/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Troponina I/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Familia , Femenino , Feto/patología , Regulación de la Expresión Génica , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mutación/genética , Linaje , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/genética
8.
Hum Mol Genet ; 25(17): 3836-3848, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27466194

RESUMEN

Dominant or recessive mutations in the progressive ankylosis gene ANKH have been linked to familial chondrocalcinosis (CCAL2), craniometaphyseal dysplasia (CMD), mental retardation, deafness and ankylosis syndrome (MRDA). The function of the encoded membrane protein ANK in cellular compartments other than the plasma membrane is unknown. Here, we show that ANK localizes to the trans-Golgi network (TGN), clathrin-coated vesicles and the plasma membrane. ANK functionally interacts with clathrin and clathrin associated adaptor protein (AP) complexes as loss of either protein causes ANK dispersion from the TGN to cytoplasmic endosome-like puncta. Consistent with its subcellular localization, loss of ANK results in reduced formation of tubular membrane carriers from the TGN, perinuclear accumulation of early endosomes and impaired transferrin endocytosis. Our data indicate that clathrin/AP-mediated cycling of ANK between the TGN, endosomes, and the cell surface regulates membrane traffic at the TGN/endosomal interface. These findings suggest that dysfunction of Golgi-endosomal membrane traffic may contribute to ANKH-associated pathologies.


Asunto(s)
Membrana Celular/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Red trans-Golgi/metabolismo , Clatrina/metabolismo , Endocitosis , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Transferrina/metabolismo
9.
Am J Hum Genet ; 94(4): 574-85, 2014 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-24702954

RESUMEN

Congenital heart defects (CHDs) are the most common birth defect worldwide and are a leading cause of neonatal mortality. Nonsyndromic atrioventricular septal defects (AVSDs) are an important subtype of CHDs for which the genetic architecture is poorly understood. We performed exome sequencing in 13 parent-offspring trios and 112 unrelated individuals with nonsyndromic AVSDs and identified five rare missense variants (two of which arose de novo) in the highly conserved gene NR2F2, a very significant enrichment (p = 7.7 × 10(-7)) compared to 5,194 control subjects. We identified three additional CHD-affected families with other variants in NR2F2 including a de novo balanced chromosomal translocation, a de novo substitution disrupting a splice donor site, and a 3 bp duplication that cosegregated in a multiplex family. NR2F2 encodes a pleiotropic developmental transcription factor, and decreased dosage of NR2F2 in mice has been shown to result in abnormal development of atrioventricular septa. Via luciferase assays, we showed that all six coding sequence variants observed in individuals significantly alter the activity of NR2F2 on target promoters.


Asunto(s)
Factor de Transcripción COUP II/genética , Cardiopatías Congénitas/genética , Animales , Sitios de Unión , Factor de Transcripción COUP II/metabolismo , Línea Celular , Exoma , Femenino , Humanos , Masculino , Ratones , Mutación Missense , Linaje , Estudios Prospectivos , Transcripción Genética
10.
Am J Hum Genet ; 93(1): 67-77, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23768516

RESUMEN

Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , Trastornos de los Cromosomas/genética , Mapeo Cromosómico/métodos , Proteínas de Unión al ADN/genética , No Compactación Aislada del Miocardio Ventricular/genética , Factores de Transcripción/genética , Animales , Cardiomiopatía Dilatada/patología , Estudios de Casos y Controles , Proliferación Celular , Deleción Cromosómica , Cromosomas Humanos Par 1/genética , Hibridación Genómica Comparativa , Exones , Mutación del Sistema de Lectura , Humanos , Mutación Missense , Contracción Miocárdica , Miocitos Cardíacos , Pez Cebra/embriología , Pez Cebra/genética
11.
PLoS Genet ; 8(9): e1002903, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22969434

RESUMEN

Left-sided congenital heart disease (CHD) encompasses a spectrum of malformations that range from bicuspid aortic valve to hypoplastic left heart syndrome. It contributes significantly to infant mortality and has serious implications in adult cardiology. Although left-sided CHD is known to be highly heritable, the underlying genetic determinants are largely unidentified. In this study, we sought to determine the impact of structural genomic variation on left-sided CHD and compared multiplex families (464 individuals with 174 affecteds (37.5%) in 59 multiplex families and 8 trios) to 1,582 well-phenotyped controls. 73 unique inherited or de novo CNVs in 54 individuals were identified in the left-sided CHD cohort. After stringent filtering, our gene inventory reveals 25 new candidates for LS-CHD pathogenesis, such as SMC1A, MFAP4, and CTHRC1, and overlaps with several known syndromic loci. Conservative estimation examining the overlap of the prioritized gene content with CNVs present only in affected individuals in our cohort implies a strong effect for unique CNVs in at least 10% of left-sided CHD cases. Enrichment testing of gene content in all identified CNVs showed a significant association with angiogenesis. In this first family-based CNV study of left-sided CHD, we found that both co-segregating and de novo events associate with disease in a complex fashion at structural genomic level. Often viewed as an anatomically circumscript disease, a subset of left-sided CHD may in fact reflect more general genetic perturbations of angiogenesis and/or vascular biology.


Asunto(s)
Variaciones en el Número de Copia de ADN , Cardiopatías Congénitas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Familia , Femenino , Corazón/embriología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Miocardio/metabolismo , Neovascularización Fisiológica , Adulto Joven
13.
Cardiovasc Res ; 119(18): 2902-2916, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-37842925

RESUMEN

AIMS: Mutation of the PRDM16 gene causes human dilated and non-compaction cardiomyopathy. The PRDM16 protein is a transcriptional regulator that affects cardiac development via Tbx5 and Hand1, thus regulating myocardial structure. The biallelic inactivation of Prdm16 induces severe cardiac dysfunction with post-natal lethality and hypertrophy in mice. The early pathological events that occur upon Prdm16 inactivation have not been explored. METHODS AND RESULTS: This study performed in-depth pathophysiological and molecular analyses of male and female Prdm16csp1/wt mice that carry systemic, monoallelic Prdm16 gene inactivation. We systematically assessed early molecular changes through transcriptomics, proteomics, and metabolomics. Kinetic modelling of cardiac metabolism was performed in silico with CARDIOKIN. Prdm16csp1/wt mice are viable up to 8 months, develop hypoplastic hearts, and diminished systolic performance that is more pronounced in female mice. Prdm16csp1/wt cardiac tissue of both sexes showed reductions in metabolites associated with amino acid as well as glycerol metabolism, glycolysis, and the tricarboxylic acid cycle. Prdm16csp1/wt cardiac tissue revealed diminished glutathione (GSH) and increased inosine monophosphate (IMP) levels indicating oxidative stress and a dysregulated energetics, respectively. An accumulation of triacylglycerides exclusively in male Prdm16csp1/wt hearts suggests a sex-specific metabolic adaptation. Metabolic modelling using CARDIOKIN identified a reduction in fatty acid utilization in males as well as lower glucose utilization in female Prdm16csp1/wt cardiac tissue. On the level of transcripts and protein expression, Prdm16csp1/wt hearts demonstrate an up-regulation of pyridine nucleotide-disulphide oxidoreductase domain 2 (Pyroxd2) and the transcriptional regulator pre-B-cell leukaemia transcription factor interacting protein 1 (Pbxip1). The strongest concordant transcriptional up-regulation was detected for Prdm16 itself, probably through an autoregulatory mechanism. CONCLUSIONS: Monoallelic, global Prdm16 mutation diminishes cardiac performance in Prdm16csp1/wt mice. Metabolic alterations and transcriptional dysregulation in Prdm16csp1/wt affect cardiac tissue. Female Prdm16csp1/wt mice develop a more pronounced phenotype, indicating sexual dimorphism at this early pathological window. This study suggests that metabolic dysregulation is an early event in the PRDM16 associated cardiac pathology.


Asunto(s)
Cardiomiopatías , Corazón , Animales , Femenino , Masculino , Ratones , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Miocardio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Caracteres Sexuales
14.
Am J Med Genet C Semin Med Genet ; 163C(3): 178-84, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23794396

RESUMEN

Left ventricular noncompaction (LVNC) is a relatively common genetic cardiomyopathy, characterized by prominent trabeculations with deep intertrabecular recesses in mainly the left ventricle. Although LVNC often occurs in an isolated entity, it may also be present in various types of congenital heart disease (CHD). The most prevalent CHD in LVNC is Ebstein anomaly, which is a rare form of CHD characterized by apical displacement and partial fusion of the septal and posterior leaflet of the tricuspid valve with the ventricular septum. Several reports of sporadic as well as familial cases of Ebstein anomaly associated with LVNC have been reported. Recent studies identified mutations in the MYH7 gene, encoding the sarcomeric ß-myosin heavy chain protein, in patients harboring this specific phenotype. Here, we will review the association between Ebstein anomaly, LVNC and mutations in MYH7, which seems to represent a subtype of Ebstein anomaly with autosomal dominant inheritance and variable penetrance.


Asunto(s)
Miosinas Cardíacas/genética , Anomalía de Ebstein/genética , Ventrículos Cardíacos/anomalías , No Compactación Aislada del Miocardio Ventricular/genética , Cadenas Pesadas de Miosina/genética , Anomalía de Ebstein/complicaciones , Genes Dominantes , Humanos , No Compactación Aislada del Miocardio Ventricular/complicaciones , Mutación , Fenotipo
15.
Nat Genet ; 30(2): 201-4, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11788824

RESUMEN

Congestive heart failure (CHF) can result from various disease states with inadequate cardiac output. CHF due to dilated cardiomyopathy (DCM) is a familial disease in 20-30% of cases and is associated with mutations in genes encoding cytoskeletal, contractile or inner-nuclear membrane proteins. We show that mutations in the gene encoding giant-muscle filament titin (TTN) cause autosomal dominant DCM linked to chromosome 2q31 (CMD1G; MIM 604145). Titin molecules extend from sarcomeric Z-discs to M-lines, provide an extensible scaffold for the contractile machinery and are crucial for myofibrillar elasticity and integrity. In a large DCM kindred, a segregating 2-bp insertion mutation in TTN exon 326 causes a frameshift, truncating A-band titin. The truncated protein of approximately 2 mD is expressed in skeletal muscle, but western blot studies with epitope-specific anti-titin antibodies suggest that the mutant protein is truncated to a 1.14-mD subfragment by site-specific cleavage. In another large family with DCM linked to CMD1G, a TTN missense mutation (Trp930Arg) is predicted to disrupt a highly conserved hydrophobic core sequence of an immunoglobulin fold located in the Z-disc-I-band transition zone. The identification of TTN mutations in individuals with CMD1G should provide further insights into the pathogenesis of familial forms of CHF and myofibrillar titin turnover.


Asunto(s)
Cardiomiopatía Dilatada/genética , Proteínas Musculares/genética , Mutación , Proteínas Quinasas/genética , Secuencia de Bases , Conectina , ADN/genética , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Musculares/química , Miocardio/metabolismo , Linaje , Pliegue de Proteína , Proteínas Quinasas/química
16.
Nat Genet ; 36(11): 1162-4, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15489853

RESUMEN

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with fibrofatty replacement of cardiac myocytes, ventricular tachyarrhythmias and sudden cardiac death. In 32 of 120 unrelated individuals with ARVC, we identified heterozygous mutations in PKP2, which encodes plakophilin-2, an essential armadillo-repeat protein of the cardiac desmosome. In two kindreds with ARVC, disease was incompletely penetrant in most carriers of PKP2 mutations.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , Mutación , Proteínas/genética , Adolescente , Desmosomas , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Placofilinas
18.
Eur Radiol ; 22(12): 2699-709, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22772366

RESUMEN

OBJECTIVES: To analyse the value of cardiovascular magnetic resonance (CMR)-derived myocardial parameters to differentiate left ventricular non-compaction cardiomyopathy (LVNC) from other cardiomyopathies and controls. METHODS: We retrospectively analysed 12 patients with LVNC, 11 with dilated and 10 with hypertrophic cardiomyopathy and compared them to 24 controls. LVNC patients had to fulfil standard echocardiographic criteria as well as additional clinical and imaging criteria. Cine steady-state free precession and late gadolinium enhancement (LGE) imaging was performed. The total LV myocardial mass index (LV-MMI), compacted (LV-MMI(compacted)), non-compacted (LV-MMI(non-compacted)), percentage LV-MM(non-compacted), ventricular volumes and function were calculated. Data were compared using analysis of variance and Dunnett's test. Additionally, semi-quantitative segmental analyses of the occurrence of increased trabeculation were performed. RESULTS: Total LV-MMI(non-compacted) and percentage LV-MM(non-compacted) were discriminators between patients with LVCN, healthy controls and those with other cardiomyopathies with cut-offs of 15 g/m(2) and 25 %, respectively. Furthermore, trabeculation in basal segments and a ratio of non-compacted/compacted myocardium of ≥3:1 were criteria for LVNC. A combination of these criteria provided sensitivities and specificities of up to 100 %. None of the LVNC patients demonstrated LGE. CONCLUSIONS: Absolute CMR quantification of the LV-MMI(non-compacted) or the percentage LV-MM(non-compacted) and increased trabeculation in basal segments allows one to reliably diagnose LVNC and to differentiate it from other cardiomyopathies. KEY POINTS: Cardiac magnetic resonance imaging can reliably diagnose left ventricular non-compaction cardiomyopathy. Differentiation of LVNC from other cardiomyopathies and normal hearts is possible. The best diagnostic performance can be achieved if combined MRI criteria for the diagnosis are used.


Asunto(s)
Cardiomiopatías/diagnóstico , No Compactación Aislada del Miocardio Ventricular/diagnóstico , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Anciano , Análisis de Varianza , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Niño , Medios de Contraste , Diagnóstico Diferencial , Ecocardiografía , Femenino , Gadolinio DTPA , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Sensibilidad y Especificidad
19.
J Cardiovasc Dev Dis ; 9(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35877568

RESUMEN

Left ventricular noncompaction (LVNC) is a ventricular wall anomaly morphologically characterized by numerous, excessively prominent trabeculations and deep intertrabecular recesses. Accumulating data now suggest that LVNC is a distinct phenotype but must not constitute a pathological phenotype. Some individuals fulfill the morphologic criteria of LVNC and are without clinical manifestations. Most importantly, morphologic criteria for LVNC are insufficient to diagnose patients with an associated cardiomyopathy (CMP). Genetic testing has become relevant to establish a diagnosis associated with CMP, congenital heart disease, neuromuscular disease, inborn error of metabolism, or syndromic disorder. Genetic factors play a more decisive role in children than in adults and severe courses of LVNC tend to occur in childhood. We reviewed the current literature and highlight the difficulties in establishing the correct diagnosis for children with LVNC. Novel insights show that the interplay of genetics, morphology, and function determine the outcome in pediatric LVNC.

20.
JACC Case Rep ; 4(5): 280-286, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35257103

RESUMEN

SCN5A was considered an exclusively cardiac expressed ion channel but discovered to also act as a novel innate immune sensor. We report on a young SCN5A variant carrier with recurrent ventricular fibrillation and massive myocardial inflammation whose peculiar clinical course is highly suggestive of such a dual role of SCN5A. (Level of Difficulty: Advanced.).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA