Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Microbiol ; 121: 104519, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637081

RESUMEN

Currently, fresh, unprocessed food has become a relevant element of the chain of transmission of enteropathogenic infections. To survive on a plant surface and further spread the infections, pathogens like Salmonella have to attach stably to the leaf surface. Adhesion, driven by various virulence factors, including the most abundant fim operon encoding type 1 fimbriae, is usually an initial step of infection, preventing physical removal of the pathogen. Adhesion properties of Salmonella's type 1 fimbriae and its FimH adhesin were investigated intensively in the past. However, there is a lack of knowledge regarding its role in interaction with plant cells. Understanding the mechanisms and structures involved in such interaction may facilitate efforts to decrease the risk of contamination and increase fresh food safety. Here, we applied Salmonella genome site-directed mutagenesis, adhesion assays, protein-protein interactions, and biophysics methods based on surface plasmon resonance to unravel the role of FimH adhesin in interaction with spinach leaves. We show that FimH is at least partially responsible for Salmonella binding to spinach leaves, and this interaction occurs in a mannose-independent manner. Importantly, we identified a potential FimH receptor as endo-1,3-ß-d-Glucanase and found that this interaction is strong and specific, with a dissociation constant in the nanomolar range. This research advances our comprehension of Salmonella's interactions with plant surfaces, offering insights that can aid in minimizing contamination risks and improving the safety of fresh, unprocessed foods.


Asunto(s)
Manosa , Salmonella typhimurium , Salmonella typhimurium/genética , Manosa/metabolismo , Spinacia oleracea , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Adhesinas Bacterianas/genética , Adhesión Bacteriana/genética
2.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545652

RESUMEN

Among various fimbrial structures used by Salmonella enterica to colonize host tissues, type 1 fimbriae (T1F) are among the most extensively studied. Although some experiments have shown the importance of T1F in the initial stages of Salmonella infection, their exact role in the infection process is not fully known. We suggested that different outcomes of T1F investigations were due to the use of different pre-infection growth conditions for the induction of the T1F. We utilized qPCR, flow cytometry, and a wide range of adhesion assays to investigate Salmonella Choleraesuis and Salmonella Typhimurium adhesion in the context of T1F expression. We demonstrated that T1F expression was highly dependent on the pre-infection growth conditions. These growth conditions yielded T1F+ and T1F- populations of Salmonella and, therefore, could be a factor influencing Salmonella-host cell interactions. We supported this conclusion by showing that increased levels of T1F expression directly correlated with higher levels of Salmonella adherence to the intestinal epithelial IPEC-J2 cell line.


Asunto(s)
Medios de Cultivo/química , Proteínas Fimbrias/genética , Salmonella typhimurium/crecimiento & desarrollo , Salmonella/crecimiento & desarrollo , Adhesión Bacteriana , Proteínas Bacterianas/genética , Técnicas Bacteriológicas , Línea Celular , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas , Regulación Bacteriana de la Expresión Génica , Humanos , Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Pase Seriado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA