Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(4): e109108, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35019161

RESUMEN

Haploinsufficiency of the progranulin (PGRN)-encoding gene (GRN) causes frontotemporal lobar degeneration (GRN-FTLD) and results in microglial hyperactivation, TREM2 activation, lysosomal dysfunction, and TDP-43 deposition. To understand the contribution of microglial hyperactivation to pathology, we used genetic and pharmacological approaches to suppress TREM2-dependent transition of microglia from a homeostatic to a disease-associated state. Trem2 deficiency in Grn KO mice reduced microglia hyperactivation. To explore antibody-mediated pharmacological modulation of TREM2-dependent microglial states, we identified antagonistic TREM2 antibodies. Treatment of macrophages from GRN-FTLD patients with these antibodies led to reduced TREM2 signaling due to its enhanced shedding. Furthermore, TREM2 antibody-treated PGRN-deficient microglia derived from human-induced pluripotent stem cells showed reduced microglial hyperactivation, TREM2 signaling, and phagocytic activity, but lysosomal dysfunction was not rescued. Similarly, lysosomal dysfunction, lipid dysregulation, and glucose hypometabolism of Grn KO mice were not rescued by TREM2 ablation. Synaptic loss and neurofilament light-chain (NfL) levels, a biomarker for neurodegeneration, were further elevated in the Grn/Trem2 KO cerebrospinal fluid (CSF). These findings suggest that TREM2-dependent microglia hyperactivation in models of GRN deficiency does not promote neurotoxicity, but rather neuroprotection.


Asunto(s)
Degeneración Lobar Frontotemporal/patología , Glicoproteínas de Membrana/metabolismo , Microglía/fisiología , Monocitos/metabolismo , Progranulinas/deficiencia , Receptores Inmunológicos/metabolismo , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Femenino , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Monocitos/efectos de los fármacos , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Quinasa Syk/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(24): e2119804119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666874

RESUMEN

Single-cell transcriptomics has revealed specific glial activation states associated with the pathogenesis of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. While these findings may eventually lead to new therapeutic opportunities, little is known about how these glial responses are reflected by biomarker changes in bodily fluids. Such knowledge, however, appears crucial for patient stratification, as well as monitoring disease progression and treatment responses in clinical trials. Here, we took advantage of well-described mouse models of ß-amyloidosis and α-synucleinopathy to explore cerebrospinal fluid (CSF) proteome changes related to their respective proteopathic lesions. Nontargeted liquid chromatography-mass spectrometry revealed that the majority of proteins that undergo age-related changes in CSF of either mouse model were linked to microglia and astrocytes. Specifically, we identified a panel of more than 20 glial-derived proteins that were increased in CSF of aged ß-amyloid precursor protein- and α-synuclein-transgenic mice and largely overlap with previously described disease-associated glial genes identified by single-cell transcriptomics. Our results also show that enhanced shedding is responsible for the increase of several of the identified glial CSF proteins as exemplified for TREM2. Notably, the vast majority of these proteins can also be quantified in human CSF and reveal changes in Alzheimer's disease cohorts. The finding that cellular transcriptome changes translate into corresponding changes of CSF proteins is of clinical relevance, supporting efforts to identify fluid biomarkers that reflect the various functional states of glial responses in cerebral proteopathies, such as Alzheimer's and Parkinson's disease.


Asunto(s)
Enfermedad de Alzheimer , Líquido Cefalorraquídeo , Neuroglía , Enfermedad de Parkinson , Proteoma , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/metabolismo , Animales , Biomarcadores/líquido cefalorraquídeo , Líquido Cefalorraquídeo/metabolismo , Perfilación de la Expresión Génica , Humanos , Ratones , Neuroglía/metabolismo , Enfermedad de Parkinson/líquido cefalorraquídeo , Enfermedad de Parkinson/metabolismo , Proteoma/metabolismo , Análisis de la Célula Individual , Proteínas tau
3.
EMBO Rep ; 23(6): e53890, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35438230

RESUMEN

Aggregation of the multifunctional RNA-binding protein TDP-43 defines large subgroups of amyotrophic lateral sclerosis and frontotemporal dementia and correlates with neurodegeneration in both diseases. In disease, characteristic C-terminal fragments of ~25 kDa ("TDP-25") accumulate in cytoplasmic inclusions. Here, we analyze gain-of-function mechanisms of TDP-25 combining cryo-electron tomography, proteomics, and functional assays. In neurons, cytoplasmic TDP-25 inclusions are amorphous, and photobleaching experiments reveal gel-like biophysical properties that are less dynamic than nuclear TDP-43. Compared with full-length TDP-43, the TDP-25 interactome is depleted of low-complexity domain proteins. TDP-25 inclusions are enriched in 26S proteasomes adopting exclusively substrate-processing conformations, suggesting that inclusions sequester proteasomes, which are largely stalled and no longer undergo the cyclic conformational changes required for proteolytic activity. Reporter assays confirm that TDP-25 impairs proteostasis, and this inhibitory function is enhanced by ALS-causing TDP-43 mutations. These findings support a patho-physiological relevance of proteasome dysfunction in ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Demencia Frontotemporal , Neuronas , Fragmentos de Péptidos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
4.
EMBO J ; 36(13): 1837-1853, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28559417

RESUMEN

Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk for several neurodegenerative diseases including Alzheimer's disease and frontotemporal dementia (FTD). Homozygous TREM2 missense mutations, such as p.T66M, lead to the FTD-like syndrome, but how they cause pathology is unknown. Using CRISPR/Cas9 genome editing, we generated a knock-in mouse model for the disease-associated Trem2 p.T66M mutation. Consistent with a loss-of-function mutation, we observe an intracellular accumulation of immature mutant Trem2 and reduced generation of soluble Trem2 similar to patients with the homozygous p.T66M mutation. Trem2 p.T66M knock-in mice show delayed resolution of inflammation upon in vivo lipopolysaccharide stimulation and cultured macrophages display significantly reduced phagocytic activity. Immunohistochemistry together with in vivo TSPO small animal positron emission tomography (µPET) demonstrates an age-dependent reduction in microglial activity. Surprisingly, perfusion magnetic resonance imaging and FDG-µPET imaging reveal a significant reduction in cerebral blood flow and brain glucose metabolism. Thus, we demonstrate that a TREM2 loss-of-function mutation causes brain-wide metabolic alterations pointing toward a possible function of microglia in regulating brain glucose metabolism.


Asunto(s)
Encéfalo/patología , Demencia Frontotemporal/patología , Glucosa/metabolismo , Glicoproteínas de Membrana/genética , Microglía/fisiología , Mutación Missense , Perfusión , Receptores Inmunológicos/genética , Animales , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Ratones , Proteínas Mutantes/genética , Tomografía de Emisión de Positrones
5.
FASEB J ; 34(5): 6675-6687, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32237095

RESUMEN

The triggering receptor expressed on myeloid cells 2 (TREM2) is a multifunctional surface protein that affects survival, migration, and phagocytic capacity of myeloid cells. Soluble TREM2 levels were found to be increased in early stages of sporadic and familial Alzheimer's disease (AD) probably reflecting a defensive microglial response to some initial brain damage. The disintegrin and metalloproteases (ADAM) 10 and 17 were identified as TREM2 sheddases. We demonstrate that meprin ß is a direct TREM2 cleaving enzyme using ADAM10/17 deficient HEK293 cells. LC-MS/MS analysis of recombinant TREM2 incubated with meprin ß revealed predominant cleavage between Arg136 and Asp137, distant to the site identified for ADAM10/17. We further demonstrate that the metalloprotease meprin ß cleaves TREM2 on macrophages concomitant with decreased levels of soluble TREM2 in the serum of Mep1b-/- mice compared to WT controls. Isolated BMDMs from Mep1b-/- mice showed significantly increased full-length TREM2 levels and enhanced phagocytosis efficiency compared to WT cells. The diminished constitutive shedding of TREM2 on meprin ß deficient macrophages could be rescued by ADAM stimulation through LPS treatment. Our data provide evidence that meprin ß is a TREM2 sheddase on macrophages and suggest that multiple proteases may be involved in the generation of soluble TREM2.


Asunto(s)
Macrófagos/fisiología , Glicoproteínas de Membrana/metabolismo , Metaloendopeptidasas/fisiología , Fagocitosis , Receptores Inmunológicos/metabolismo , Animales , Arginina/metabolismo , Ácido Aspártico/metabolismo , Macrófagos/citología , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Receptores Inmunológicos/genética
7.
EMBO Rep ; 18(7): 1186-1198, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28483841

RESUMEN

Sequence variations in the triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to an increased risk for neurodegenerative disorders such as Alzheimer's disease and frontotemporal lobar degeneration. In the brain, TREM2 is predominantly expressed in microglia. Several disease-associated TREM2 variants result in a loss of function by reducing microglial phagocytosis, impairing lipid sensing, preventing binding of lipoproteins and affecting shielding of amyloid plaques. We here investigate the consequences of TREM2 loss of function on the microglia transcriptome. Among the differentially expressed messenger RNAs in wild-type and Trem2-/- microglia, gene clusters are identified which represent gene functions in chemotaxis, migration and mobility. Functional analyses confirm that loss of TREM2 impairs appropriate microglial responses to injury and signals that normally evoke chemotaxis on multiple levels. In an ex vivo organotypic brain slice assay, absence of TREM2 reduces the distance migrated by microglia. Moreover, migration towards defined chemo-attractants is reduced upon ablation of TREM2 and can be rescued by TREM2 re-expression. In vivo, microglia lacking TREM2 migrate less towards injected apoptotic neurons, and outgrowth of microglial processes towards sites of laser-induced focal CNS damage in the somatosensory cortex is slowed. The apparent lack of chemotactic stimulation upon depletion of TREM2 is consistent with a stable expression profile of genes characterizing the homoeostatic signature of microglia.


Asunto(s)
Quimiotaxis , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Microglía/fisiología , Neuronas/patología , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Células Cultivadas , Demencia Frontotemporal , Perfilación de la Expresión Génica , Humanos , Mutación con Pérdida de Función , Células Mieloides , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Fagocitosis
8.
Alzheimers Dement ; 12(12): 1259-1272, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27423963

RESUMEN

INTRODUCTION: TREM2 is involved in the regulation of inflammatory response and phagocytosis. A soluble fragment (sTREM2) is often found abnormally increased in cerebrospinal fluid (CSF) in Alzheimer's disease (AD). METHODS: One hundred fourteen participants (45 control, 19 preclinical, 27 mild cognitive impairment [MCI], and 23 AD) underwent CSF sTREM2 determination and magnetic resonance imaging (MRI). We studied the association between CSF sTREM2, gray matter volume, and water motion diffusivity and anisotropy across groups. RESULTS: In MCI patients, a positive correlation between CSF sTREM2 and gray matter volume was found in the bilateral inferior and middle temporal cortices, precuneus, the supramarginal, and angular gyri, after controlling by age, sex, and p-tau. A negative correlation with mean diffusivity was detected in overlapping regions, among others. DISCUSSION: In early AD, augmented CSF sTREM2 levels correspond with cerebral MRI features typical of brain swelling, supporting a role for TREM2 in the regulation of the neuroinflammatory response to early neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Sustancia Gris/patología , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Femenino , Humanos , Inflamación , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Proteínas tau/líquido cefalorraquídeo
9.
Acta Neuropathol ; 127(6): 845-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24619111

RESUMEN

Heterozygous loss-of-function mutations in the progranulin (GRN) gene and the resulting reduction of GRN levels is a common genetic cause for frontotemporal lobar degeneration (FTLD) with accumulation of TAR DNA-binding protein (TDP)-43. Recently, it has been shown that a complete GRN deficiency due to a homozygous GRN loss-of-function mutation causes neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disorder. These findings suggest that lysosomal dysfunction may also contribute to some extent to FTLD. Indeed, Grn(-/-) mice recapitulate not only pathobiochemical features of GRN-associated FTLD-TDP (FTLD-TDP/GRN), but also those which are characteristic for NCL and lysosomal impairment. In Grn(-/-) mice the lysosomal proteins cathepsin D (CTSD), LAMP (lysosomal-associated membrane protein) 1 and the NCL storage components saposin D and subunit c of mitochondrial ATP synthase (SCMAS) were all found to be elevated. Moreover, these mice display increased levels of transmembrane protein (TMEM) 106B, a lysosomal protein known as a risk factor for FTLD-TDP pathology. In line with a potential pathological overlap of FTLD and NCL, Ctsd(-/-) mice, a model for NCL, show elevated levels of the FTLD-associated proteins GRN and TMEM106B. In addition, pathologically phosphorylated TDP-43 occurs in Ctsd(-/-) mice to a similar extent as in Grn(-/-) mice. Consistent with these findings, some NCL patients accumulate pathologically phosphorylated TDP-43 within their brains. Based on these observations, we searched for pathological marker proteins, which are characteristic for NCL or lysosomal impairment in brains of FTLD-TDP/GRN patients. Strikingly, saposin D, SCMAS as well as the lysosomal proteins CTSD and LAMP1/2 are all elevated in patients with FTLD-TDP/GRN. Thus, our findings suggest that lysosomal storage disorders and GRN-associated FTLD may share common features.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Animales , Catepsina D/genética , Catepsina D/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Granulinas , Humanos , Immunoblotting , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Noqueados , Fosforilación , Progranulinas
10.
Acta Neuropathol ; 125(3): 413-23, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23381195

RESUMEN

Genetic analysis revealed the hexanucleotide repeat expansion GGGGCC within the regulatory region of the gene C9orf72 as the most common cause of familial amyotrophic lateral sclerosis and the second most common cause of frontotemporal lobar degeneration. Since repeat expansions might cause RNA toxicity via sequestration of RNA-binding proteins, we searched for proteins capable of binding to GGGGCC repeats. In vitro-transcribed biotinylated RNA containing hexanucleotide GGGGCC or, as control, AAAACC repeats were incubated with nuclear protein extracts. Using stringent filtering protocols 20 RNA-binding proteins with a variety of different functions in RNA metabolism, translation and transport were identified. A subset of these proteins was further investigated by immunohistochemistry in human autopsy brains. This revealed that hnRNP A3 formed neuronal cytoplasmic and intranuclear inclusions in the hippocampus of patients with C9orf72 repeat extensions. Confocal microcopy showed that these inclusions belong to the group of the so far enigmatic p62-positive/TDP-43 negative inclusions characteristically seen in autopsy cases of diseased C9orf72 repeat expansion carriers. Thus, we have identified one protein component of these pathognomonic inclusions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Hipocampo/patología , Cuerpos de Inclusión/metabolismo , Mutación/genética , Proteínas/genética , Secuencias Repetitivas de Ácidos Nucleicos/fisiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72 , Cromatografía Líquida de Alta Presión , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Cuerpos de Inclusión/patología , Espectrometría de Masas , ARN Interferente Pequeño/metabolismo , Proteína Sequestosoma-1 , Transfección
11.
J Pathol ; 228(1): 67-76, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22733568

RESUMEN

Loss-of-function mutations in progranulin (GRN) are associated with frontotemporal lobar degeneration with intraneuronal ubiquitinated protein accumulations composed primarily of hyperphosphorylated TDP-43 (FTLD-TDP). The mechanism by which GRN deficiency causes TDP-43 pathology or neurodegeneration remains elusive. To explore the role of GRN in vivo, we established Grn knockout mice using a targeted genomic recombination approach and Cre-LoxP technology. Constitutive Grn homozygous knockout (Grn(-/-) ) mice were born in an expected Mendelian pattern of inheritance and showed no phenotypic alterations compared to heterozygous (Grn(+/-) ) or wild-type (Wt) littermates until 10 months of age. From then, Grn(-/-) mice showed reduced survival accompanied by significantly increased gliosis and ubiquitin-positive accumulations in the cortex, hippocampus, and subcortical regions. Although phosphorylated TDP-43 could not be detected in the ubiquitinated inclusions, elevated levels of hyperphosphorylated full-length TDP-43 were recovered from detergent-insoluble brain fractions of Grn(-/-) mice. Phosphorylated TDP-43 increased with age and was primarily extracted from the nuclear fraction. Grn(-/-) mice also showed degenerative liver changes and cathepsin D-positive foamy histiocytes within sinusoids, suggesting widespread defects in lysosomal turnover. An increase in insulin-like growth factor (IGF)-1 was observed in Grn(-/-) brains, and increased IGF-1 signalling has been associated with decreased longevity. Our data suggest that progranulin deficiency in mice leads to reduced survival in adulthood and increased cellular ageing accompanied by hyperphosphorylation of TDP-43, and recapitulates key aspects of FTLD-TDP neuropathology.


Asunto(s)
Senescencia Celular , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/patología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Animales , Conducta Animal/fisiología , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al ADN/genética , Femenino , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/mortalidad , Expresión Génica , Gliosis/metabolismo , Gliosis/patología , Granulinas , Hígado/patología , Longevidad/fisiología , Masculino , Ratones , Ratones Noqueados , Fosforilación , Progranulinas , Tasa de Supervivencia , Ubiquitina/metabolismo
12.
Proc Natl Acad Sci U S A ; 107(8): 3858-63, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133711

RESUMEN

Neuronal cytoplasmic and intranuclear aggregates of RNA-binding protein TDP-43 are a hallmark feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). ALS and FTLD show a considerable clinical and pathological overlap and occur as both familial and sporadic forms. Though missense mutations in TDP-43 cause rare forms of familial ALS, it is not yet known whether this is due to loss of TDP-43 function or gain of aberrant function. Moreover, the role of wild-type (WT) TDP-43, associated with the majority of familial and sporadic ALS/FTLD patients, is also currently unknown. Generating homozygous and hemizygous WT human TDP-43 transgenic mouse lines, we show here a dose-dependent degeneration of cortical and spinal motor neurons and development of spastic quadriplegia reminiscent of ALS. A dose-dependent degeneration of nonmotor cortical and subcortical neurons characteristic of FTLD was also observed. Neurons in the affected spinal cord and brain regions showed accumulation of TDP-43 nuclear and cytoplasmic aggregates that were both ubiquitinated and phosphorylated as observed in ALS/FTLD patients. Moreover, the characteristic approximately 25-kDa C-terminal fragments (CTFs) were also recovered from nuclear fractions and correlated with disease development and progression in WT TDP-43 mice. These findings suggest that approximately 25-kDa TDP-43 CTFs are noxious to neurons by a gain of aberrant nuclear function.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/genética , Cuerpos de Inclusión/metabolismo , Parálisis/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Humanos , Cuerpos de Inclusión/genética , Ratones , Ratones Transgénicos , Espasticidad Muscular/genética , Espasticidad Muscular/patología , Mutación Missense , Parálisis/patología
13.
Brain ; 134(Pt 3): 808-15, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21354975

RESUMEN

In a genome-wide association study of frontotemporal lobar degeneration with pathological inclusions of TAR DNA-binding protein, significant association was obtained with three single nucleotide polymorphisms at 7p21.3, in a region encompassing the gene TMEM106B. This study also suggested a potential modifying effect of TMEM106B on disease since the association was strongest in progranulin mutation carriers. Further, the risk effect seemed to correlate with increased TMEM106B expression in patients. In the present study, we sought to replicate these three findings using an independent Flanders-Belgian cohort of primarily clinically diagnosed patients with frontotemporal lobar degeneration (n = 288). We were able to confirm the association with TMEM106B with a P-value of 0.008 for rs1990622, the top marker from the genome-wide association study [odds ratio 0.75 (95% confidence interval 0.61-0.93)]. Further, high-density single nucleotide polymorphism mapping suggested that the association was solely driven by the gene TMEM106B. Homozygous carriers of the TMEM106B protective alleles had a 50% reduced risk of developing frontotemporal lobar degeneration. However, we were unable to detect a modifying effect of the TMEM106B single nucleotide polymorphisms on onset age in progranulin mutation carriers belonging to an extended, clinical and pathological well-documented founder family segregating a progranulin null mutation. Also, we could not observe significant differences in messenger RNA expression between patients and control individuals in lymphoblast cell lines and in brain frontal cortex. In conclusion, we replicated the genetic TMEM106B association in a primarily clinically diagnosed cohort of patients with frontotemporal lobar degeneration from Flanders-Belgium. Additional studies are needed to unravel the molecular role of TMEM106B in disease onset and pathogenesis.


Asunto(s)
Degeneración Lobar Frontotemporal/diagnóstico , Degeneración Lobar Frontotemporal/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple/genética , Edad de Inicio , Anciano , Estudios de Cohortes , Femenino , Lóbulo Frontal/patología , Degeneración Lobar Frontotemporal/patología , Regulación de la Expresión Génica/fisiología , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Desequilibrio de Ligamiento , Linfocitos/metabolismo , Linfocitos/patología , Masculino , Persona de Mediana Edad
14.
Front Aging Neurosci ; 14: 854031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431893

RESUMEN

We undertook longitudinal ß-amyloid positron emission tomography (Aß-PET) imaging as a translational tool for monitoring of chronic treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aß model mice. We thus tested the hypothesis this treatment would rescue from increases of the Aß-PET signal while promoting spatial learning and preservation of synaptic density. Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline age: 8 months) and App NL-G-F mice (N = 37; baseline age: 5 months) using Aß-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial memory performance and confirmed terminal PET findings by immunohistochemical and biochemistry analyses. Surprisingly, Aß-PET and immunohistochemistry revealed a shift toward higher fibrillary composition of Aß-plaques during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial learning were improved in transgenic mice with pioglitazone treatment, in association with the increased plaque fibrillarity. These translational data suggest that a shift toward higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the Aß-PET signal upon immunomodulatory treatments targeting Aß aggregation can thus be protective.

15.
PLoS One ; 17(5): e0267298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35617280

RESUMEN

Two genetic variants in strong linkage disequilibrium (rs9536314 and rs9527025) in the Klotho (KL) gene, encoding a transmembrane protein, implicated in longevity and associated with brain resilience during normal aging, were recently shown to be associated with Alzheimer disease (AD) risk in cognitively normal participants who are APOE ε4 carriers. Specifically, the participants heterozygous for this variant (KL-SVHET+) showed lower risk of developing AD. Furthermore, a neuroprotective effect of KL-VSHET+ has been suggested against amyloid burden for cognitively normal participants, potentially mediated via the regulation of redox pathways. However, inconsistent associations and a smaller sample size of existing studies pose significant hurdles in drawing definitive conclusions. Here, we performed a well-powered association analysis between KL-VSHET+ and five different AD endophenotypes; brain amyloidosis measured by positron emission tomography (PET) scans (n = 5,541) or cerebrospinal fluid Aß42 levels (CSF; n = 5,093), as well as biomarkers associated with tau pathology: the CSF Tau (n = 5,127), phosphorylated Tau (pTau181; n = 4,778) and inflammation: CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2; n = 2,123) levels. Our results found nominally significant associations of KL-VSHET+ status with biomarkers for brain amyloidosis (e.g., CSF Aß positivity; odds ratio [OR] = 0.67 [95% CI, 0.55-0.78], ß = 0.72, p = 0.007) and tau pathology (e.g., biomarker positivity for CSF Tau; OR = 0.39 [95% CI, 0.19-0.77], ß = -0.94, p = 0.007, and pTau; OR = 0.50 [95% CI, 0.27-0.96], ß = -0.68, p = 0.04) in cognitively normal participants, 60-80 years old, who are APOE e4-carriers. Our work supports previous findings, suggesting that the KL-VSHET+ on an APOE ε4 genotype background may modulate Aß and tau pathology, thereby lowering the intensity of neurodegeneration and incidence of cognitive decline in older controls susceptible to AD.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Biomarcadores/líquido cefalorraquídeo , Susceptibilidad a Enfermedades , Endofenotipos , Humanos , Persona de Mediana Edad , Fragmentos de Péptidos/genética , Tomografía de Emisión de Positrones , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/genética
16.
Lancet Neurol ; 21(4): 329-341, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35305339

RESUMEN

BACKGROUND: Therapeutic modulation of TREM2-dependent microglial function might provide an additional strategy to slow the progression of Alzheimer's disease. Although studies in animal models suggest that TREM2 is protective against Alzheimer's pathology, its effect on tau pathology and its potential beneficial role in people with Alzheimer's disease is still unclear. Our aim was to study associations between the dynamics of soluble TREM2, as a biomarker of TREM2 signalling, and amyloid ß (Aß) deposition, tau-related pathology, neuroimaging markers, and cognitive decline, during the progression of autosomal dominant Alzheimer's disease. METHODS: We did a longitudinal analysis of data from the Dominantly Inherited Alzheimer Network (DIAN) observational study, which includes families with a history of autosomal dominant Alzheimer's disease. Participants aged over 18 years who were enrolled in DIAN between Jan 1, 2009, and July 31, 2019, were categorised as either carriers of pathogenic variants in PSEN1, PSEN2, and APP genes (n=155) or non-carriers (n=93). We measured amounts of cleaved soluble TREM2 using a novel immunoassay in CSF samples obtained every 2 years from participants who were asymptomatic (Clinical Dementia Rating [CDR]=0) and annually for those who were symptomatic (CDR>0). CSF concentrations of Aß40, Aß42, total tau (t-tau), and tau phosphorylated on threonine 181 (p-tau) were measured by validated immunoassays. Predefined neuroimaging measurements were total cortical uptake of Pittsburgh compound B PET (PiB-PET), cortical thickness in the precuneus ascertained by MRI, and hippocampal volume determined by MRI. Cognition was measured using a validated cognitive composite (including DIAN word list test, logical memory delayed recall, digit symbol coding test [total score], and minimental status examination). We based our statistical analysis on univariate and bivariate linear mixed effects models. FINDINGS: In carriers of pathogenic variants, a high amyloid burden at baseline, represented by low CSF Aß42 (ß=-4·28 × 10-2 [SE 0·013], p=0·0012), but not high cortical uptake in PiB-PET (ß=-5·51 × 10-3 [0·011], p=0·63), was the only predictor of an augmented annual rate of subsequent increase in soluble TREM2. Augmented annual rates of increase in soluble TREM2 were associated with a diminished rate of decrease in amyloid deposition, as measured by Aß42 in CSF (r=0·56 [0·22], p=0·011), in presymptomatic carriers of pathogenic variants, and with diminished annual rate of increase in PiB-PET (r=-0·67 [0·25], p=0·0060) in symptomatic carriers of pathogenic variants. Presymptomatic carriers of pathogenic variants with annual rates of increase in soluble TREM2 lower than the median showed a correlation between enhanced annual rates of increase in p-tau in CSF and augmented annual rates of increase in PiB-PET signal (r=0·45 [0·21], p=0·035), that was not observed in those with rates of increase in soluble TREM2 higher than the median. Furthermore, presymptomatic carriers of pathogenic variants with rates of increase in soluble TREM2 above or below the median had opposite associations between Aß42 in CSF and PiB-PET uptake when assessed longitudinally. Augmented annual rates of increase in soluble TREM2 in presymptomatic carriers of pathogenic variants correlated with decreased cortical shrinkage in the precuneus (r=0·46 [0·22]), p=0·040) and diminished cognitive decline (r=0·67 [0·22], p=0·0020). INTERPRETATION: Our findings in autosomal dominant Alzheimer's disease position the TREM2 response within the amyloid cascade immediately after the first pathological changes in Aß aggregation and further support the role of TREM2 on Aß plaque deposition and compaction. Furthermore, these findings underpin a beneficial effect of TREM2 on Aß deposition, Aß-dependent tau pathology, cortical shrinkage, and cognitive decline. Soluble TREM2 could, therefore, be a key marker for clinical trial design and interpretation. Efforts to develop TREM2-boosting therapies are ongoing. FUNDING: German Research Foundation, US National Institutes of Health.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Glicoproteínas de Membrana , Adulto , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Biomarcadores , Cognición/fisiología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Humanos , Glicoproteínas de Membrana/líquido cefalorraquídeo , Glicoproteínas de Membrana/genética , Persona de Mediana Edad , Receptores Inmunológicos/genética , Estados Unidos
17.
Biochem Soc Trans ; 39(4): 954-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21787329

RESUMEN

TDP-43 (TAR DNA-binding protein 43) has been identified as a key protein of ubiquitinated inclusions in brains of patients with ALS (amyotrophic lateral sclerosis) or FTLD (frontotemporal lobar degeneration), defining a new pathological disease spectrum. Recently, coding mutations have been identified in the TDP-43 gene (TARDBP), which further confirmed the pathogenic nature of the protein. Today, several animal models have been generated to gain more insight into the disease-causing pathways of the FTLD/ALS spectrum. This mini-review summarizes the current status of TDP-43 models, with a focus on mutant TDP-43.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal/genética , Proteínas Mutantes/genética , Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Proteínas Mutantes/metabolismo
18.
Theranostics ; 11(18): 8964-8976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522221

RESUMEN

Modulation of the innate immune system is emerging as a promising therapeutic strategy against Alzheimer's disease (AD). However, determinants of a beneficial therapeutic effect are ill-understood. Thus, we investigated the potential of 18 kDa translocator protein positron-emission-tomography (TSPO-PET) for assessment of microglial activation in mouse brain before and during chronic immunomodulation. Methods: Serial TSPO-PET was performed during five months of chronic microglia modulation by stimulation of the peroxisome proliferator-activated receptor (PPAR)-γ with pioglitazone in two different mouse models of AD (PS2APP, AppNL-G-F ). Using mixed statistical models on longitudinal TSPO-PET data, we tested for effects of therapy and sex on treatment response. We tested correlations of baseline with longitudinal measures of TSPO-PET, and correlations between PET results with spatial learning performance and ß-amyloid accumulation of individual mice. Immunohistochemistry was used to determine the molecular source of the TSPO-PET signal. Results: Pioglitazone-treated female PS2APP and AppNL-G-F mice showed attenuation of the longitudinal increases in TSPO-PET signal when compared to vehicle controls, whereas treated male AppNL-G-F mice showed the opposite effect. Baseline TSPO-PET strongly predicted changes in microglial activation in treated mice (R = -0.874, p < 0.0001) but not in vehicle controls (R = -0.356, p = 0.081). Reduced TSPO-PET signal upon pharmacological treatment was associated with better spatial learning despite higher fibrillar ß-amyloid accumulation. Immunohistochemistry confirmed activated microglia to be the source of the TSPO-PET signal (R = 0.952, p < 0.0001). Conclusion: TSPO-PET represents a sensitive biomarker for monitoring of immunomodulation and closely reflects activated microglia. Sex and pre-therapeutic assessment of baseline microglial activation predict individual immunomodulation effects and may serve for responder stratification.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Receptores de GABA/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunidad Innata/inmunología , Inmunomodulación/inmunología , Inmunomodulación/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , PPAR gamma/efectos de los fármacos , PPAR gamma/metabolismo , Pioglitazona/farmacología , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/fisiología , Factores Sexuales
19.
J Neurochem ; 115(3): 735-47, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20731760

RESUMEN

Null mutations in progranulin (GRN) are associated with frontotemporal lobar degeneration characterized by intraneuronal accumulation of TAR DNA-binding protein-43 (TDP-43). However, the mechanism by which GRN deficiency leads to neurodegeneration remains largely unknown. In primary cortical neurons derived from Grn knockout (Grn(-/-) ) mice, we found that Grn-deficiency causes significantly reduced neuronal survival and increased caspase-mediated apoptosis, which was not observed in primary mouse embryonic fibroblasts derived from Grn(-/-) mice. Also, neurons derived from Grn(-/-) mice showed an increased amount of pTDP-43 accumulations. Furthermore, proteasomal inhibition with MG132 caused increased caspase-mediated TDP-43 fragmentation and accumulation of detergent-insoluble 35- and 25-kDa C-terminal fragments in Grn(-/-) neurons and mouse embryonic fibroblasts. Interestingly, full-length TDP-43 also accumulated in the detergent-insoluble fraction, and caspase-inhibition prevented MG132-induced generation of TDP-43 C-terminal fragments but did not block the pathological conversion of full-length TDP-43 from soluble to insoluble species. These data suggest that GRN functions as a survival factor for cortical neurons and GRN-deficiency causes increased susceptibility to cellular stress. This leads to increased aggregation and accumulation of full-length TDP-43 along with its C-terminal derivatives by both caspase-dependent and independent mechanisms.


Asunto(s)
Caspasas/metabolismo , Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Proteínas de Unión al ADN/química , Activación Enzimática/fisiología , Fibroblastos/metabolismo , Granulinas , Inmunohistoquímica , Ratones , Ratones Noqueados , Proteína Oncogénica v-akt/metabolismo , Fosforilación , Progranulinas , Complejo de la Endopetidasa Proteasomal , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
J Pathol ; 219(2): 173-81, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19557827

RESUMEN

Amyloid-beta (Abeta) plaques are pathological hallmarks of Alzheimer disease (AD). In addition, innate inflammatory responses, such as those mediated by microglia, are integral to the pathogenesis of AD. Interestingly, only dense-core plaques and not diffuse plaques are associated with neuritic and inflammatory pathology in AD patients as well as in mouse AD models. However, the precise neuropathological changes that occur in the brain in response to amyloid deposition are largely unknown. To study the molecular mechanism(s) responsible for Abeta-mediated neuropathology, we performed a gene expression analysis on laser-microdissected brain tissue of Tg2576 and APPPS1 mice that are characterized by different types of amyloid plaques and genetic backgrounds. Data were validated by image and biochemical analyses on different ages of Tg2576, APPPS1, and Abeta42-depositing BRI-Abeta42 mice. Consistent with an important role of inflammatory responses in AD, we identified progranulin (mouse Grn; human GRN) as one of the top ten up-regulated molecules in Tg2576 ( approximately 8-fold increased) and APPPS1 ( approximately 2-fold increased) mice compared to littermate controls, and among the eight significantly up-regulated molecules common to both mouse models. In addition, Grn levels correlated significantly with amyloid load, especially the dense-core plaque pathology (p < 0.001). We further showed that Grn is up-regulated in microglia and neurons and neurites around dense-core plaques, but not in astrocytes or oligodendrocytes, as has been shown in AD patients. Our data therefore support the ongoing use of these mouse models in drug trials, especially those with anti-inflammatory compounds. Moreover, the correlation of Grn with increasing disease severity in AD mouse models prompts human studies exploring the viability of GRN as a disease biomarker. Because loss of GRN has recently been shown to cause frontotemporal dementia and serves as a risk factor for AD, the strong GRN reactivity around dense-core plaques is consistent with an important role of this factor in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Granulinas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Neuritas/metabolismo , Neuronas/metabolismo , Placa Amiloide/patología , Progranulinas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA