Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Adv ; 9(27): eadf8251, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37406129

RESUMEN

Semen is an important vector for sexual HIV-1 transmission. Although CXCR4-tropic (X4) HIV-1 may be present in semen, almost exclusively CCR5-tropic (R5) HIV-1 causes systemic infection after sexual intercourse. To identify factors that may limit sexual X4-HIV-1 transmission, we generated a seminal fluid-derived compound library and screened it for antiviral agents. We identified four adjacent fractions that blocked X4-HIV-1 but not R5-HIV-1 and found that they all contained spermine and spermidine, abundant polyamines in semen. We showed that spermine, which is present in semen at concentrations up to 14 mM, binds CXCR4 and selectively inhibits cell-free and cell-associated X4-HIV-1 infection of cell lines and primary target cells at micromolar concentrations. Our findings suggest that seminal spermine restricts sexual X4-HIV-1 transmission.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Espermidina/farmacología , Espermina/farmacología , Infecciones por VIH/tratamiento farmacológico , Línea Celular , Receptores CXCR4
2.
Cell Host Microbe ; 30(1): 69-82.e10, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34973165

RESUMEN

A fraction of COVID-19 convalescent individuals mount a potent antibody response to SARS-CoV-2 with cross-reactivity to SARS-CoV-1. To uncover their humoral response in detail, we performed single B cell analysis from 10 SARS-CoV-2 elite neutralizers. We isolated and analyzed 126 monoclonal antibodies, many of which were sarbecovirus cross-reactive, with some displaying merbecovirus- and embecovirus-reactivity. Several isolated broadly neutralizing antibodies were effective against B.1.1.7, B.1.351, B.1.429, B.1.617, and B.1.617.2 variants and 19 prominent potential escape sites. Furthermore, assembly of 716,806 SARS-CoV-2 sequences predicted emerging escape variants, which were also effectively neutralized. One of these broadly neutralizing potent antibodies, R40-1G8, is a IGHV3-53 RBD-class-1 antibody. Remarkably, cryo-EM analysis revealed that R40-1G8 has a flexible binding mode, targeting both "up" and "down" conformations of the RBD. Given the threat of emerging SARS-CoV-2 variants, we demonstrate that elite neutralizers are a valuable source for isolating ultrapotent antibody candidates to prevent and treat SARS-CoV-2 infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Monoclonales/inmunología , COVID-19/virología , Células Cultivadas , Chlorocebus aethiops , Reacciones Cruzadas/inmunología , Femenino , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Neutralización/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
3.
Vaccines (Basel) ; 9(3)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673566

RESUMEN

Humanized mice are critical for HIV-1 research, but humanized mice generated from cord blood are inefficient at mucosal HIV-1 transmission. Most mucosal HIV-1 transmission studies in mice require fetal tissue-engraftment, the use of which is highly restricted or prohibited. We present a fetal tissue-independent model called CD34T+ with enhanced human leukocyte levels in the blood and improved T cell homing to the gut-associated lymphoid tissue. CD34T+ mice are highly permissive to intra-rectal HIV-1 infection and also show normal env diversification in vivo despite high viral replication. Moreover, mucosal infection in CD34T+ mice can be prevented by infusion of broadly neutralizing antibodies. CD34T+ mice can be rapidly and easily generated using only cord blood cells and do not require any complicated surgical procedures for the humanization process. Therefore, CD34T+ mice provide a novel platform for mucosal HIV-1 transmission studies as well as rapid in vivo testing of novel prevention molecules against HIV-1.

4.
Microorganisms ; 9(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807490

RESUMEN

Background: The investigation of the antibody response to SARS-CoV-2 represents a key aspect in facing the COVID-19 pandemic. In the present study, we compared the new Immundiagnostik IDK® anti-SARS-CoV-2 S1 IgG assay with four widely-used commercial serological assays for the detection of antibodies targeting S (spike) and NC (nucleocapsid) proteins. Methods: Serum samples were taken from an unbiased group of convalescent patients and from a negative control group. Sample were simultaneously analyzed by the new Immundiagnostik IDK® anti-SARS-CoV-2 S1 IgG assay, by the DiaSorin LIAISON® SARS-CoV-2 S1/S2 IgG assay, and by the Euroimmun anti-SARS-CoV-2 S1 IgG ELISA. Antibodies binding NC were detected by the Abbott SARS-CoV-2 IgG assay and by the pan-immunoglobulin immunoassay Roche Elecsys® anti-SARS-CoV-2. Moreover, we investigated samples of a group of COVID-19 convalescent subjects that were primarily tested S1 IgG non-reactive. Samples were also tested by live virus and pseudovirus neutralization tests. Results: Overall, the IDK® anti-SARS-CoV-2 S1 IgG assay showed the highest sensitivity among the evaluated spike (S) protein-based assays. Additionally, the Immundiagnostik assay correlated well with serum-neutralizing activity. Conclusions: The novel IDK® anti-SARS-CoV-2 S1 IgG assay showed high sensitivity and specificity, representing a valid option for use in the routine diagnostic.

5.
Cell Host Microbe ; 29(6): 917-929.e4, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33984285

RESUMEN

Understanding antibody-based SARS-CoV-2 immunity is critical for overcoming the COVID-19 pandemic and informing vaccination strategies. We evaluated SARS-CoV-2 antibody dynamics over 10 months in 963 individuals who predominantly experienced mild COVID-19. Investigating 2,146 samples, we initially detected SARS-CoV-2 antibodies in 94.4% of individuals, with 82% and 79% exhibiting serum and IgG neutralization, respectively. Approximately 3% of individuals demonstrated exceptional SARS-CoV-2 neutralization, with these "elite neutralizers" also possessing SARS-CoV-1 cross-neutralizing IgG. Multivariate statistical modeling revealed age, symptomatic infection, disease severity, and gender as key factors predicting SARS-CoV-2-neutralizing activity. A loss of reactivity to the virus spike protein was observed in 13% of individuals 10 months after infection. Neutralizing activity had half-lives of 14.7 weeks in serum versus 31.4 weeks in purified IgG, indicating a rather long-term IgG antibody response. Our results demonstrate a broad spectrum in the initial SARS-CoV-2-neutralizing antibody response, with sustained antibodies in most individuals for 10 months after mild COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Adolescente , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2 , Factores de Tiempo , Adulto Joven
6.
Vaccines (Basel) ; 8(4)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322227

RESUMEN

In the absence of an active prophylactic vaccine against HIV-1, passively administered, broadly neutralizing antibodies (bnAbs) identified in some chronically infected persons were shown to prevent HIV-1 infection in animal models. However, passive administration of bnAbs may not be suited to prevent sexual HIV-1 transmission in high-risk cohorts, as a continuous high level of active bnAbs may be difficult to achieve at the primary site of sexual transmission, the human vagina with its acidic pH. Therefore, we used Lactobacillus, a natural commensal in the healthy vaginal microbiome, to express bn nanobodies (VHH) against HIV-1 that we reported previously. After demonstrating that recombinant VHHA6 expressed in E. coli was able to protect humanized mice from mucosal infection by HIV-1Bal, we expressed VHHA6 in a soluble or in a cell-wall-anchored form in Lactobacillus rhamnosus DSM14870. This strain is already clinically applied for treatment of bacterial vaginosis. Both forms of VHHA6 neutralized a set of primary epidemiologically relevant HIV-1 strains in vitro. Furthermore, VHHA6 was still active at an acidic pH. Thus, lactobacilli expressing bn VHH potentially represent an attractive vector for the passive immunization of women in cohorts at high risk of HIV-1 transmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA