Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Immunity ; 55(6): 982-997.e8, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35617964

RESUMEN

Antigen cross-presentation, wherein dendritic cells (DCs) present exogenous antigen on major histocompatibility class I (MHC-I) molecules, is considered the primary mechanism by which DCs initiate tumor-specific CD8+ T cell responses. Here, we demonstrate that MHC-I cross-dressing, an antigen presentation pathway in which DCs acquire and display intact tumor-derived peptide:MHC-I molecules, is also important in orchestrating anti-tumor immunity. Cancer cell MHC-I expression was required for optimal CD8+ T cell activation in two subcutaneous tumor models. In vivo acquisition of tumor-derived peptide:MHC-I molecules by DCs was sufficient to induce antigen-specific CD8+ T cell priming. Transfer of tumor-derived human leukocyte antigen (HLA) molecules to myeloid cells was detected in vitro and in human tumor xenografts. In conclusion, MHC-I cross-dressing is crucial for anti-tumor CD8+ T cell priming by DCs. In addition to quantitatively enhancing tumor antigen presentation, MHC cross-dressing might also enable DCs to more faithfully and efficiently mirror the cancer cell peptidome.


Asunto(s)
Células Dendríticas , Neoplasias , Presentación de Antígeno , Antígenos de Neoplasias , Vendajes , Linfocitos T CD8-positivos , Reactividad Cruzada , Antígenos de Histocompatibilidad Clase I , Humanos , Complejo Mayor de Histocompatibilidad , Neoplasias/metabolismo , Péptidos
3.
Immunity ; 44(4): 847-59, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27037189

RESUMEN

Although antigen recognition mediated by the T cell receptor (TCR) influences many facets of Foxp3(+) regulatory T (Treg) cell biology, including development and function, the cell types that present antigen to Treg cells in vivo remain largely undefined. By tracking a clonal population of Aire-dependent, prostate-specific Treg cells in mice, we demonstrated an essential role for dendritic cells (DCs) in regulating organ-specific Treg cell biology. We have shown that the thymic development of prostate-specific Treg cells required antigen presentation by DCs. Moreover, Batf3-dependent CD8α(+) DCs were dispensable for the development of this clonotype and had negligible impact on the polyclonal Treg cell repertoire. In the periphery, CCR7-dependent migratory DCs coordinated the activation of organ-specific Treg cells in the prostate-draining lymph nodes. Our results demonstrate that the development and peripheral regulation of organ-specific Treg cells are dependent on antigen presentation by DCs, implicating DCs as key mediators of organ-specific immune tolerance.


Asunto(s)
Presentación de Antígeno/inmunología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Células Dendríticas/inmunología , Próstata/inmunología , Proteínas Represoras/genética , Autotolerancia/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígeno B7-1/biosíntesis , Antígeno B7-1/genética , Antígeno B7-2/biosíntesis , Antígeno B7-2/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Antígenos CD8/metabolismo , Diferenciación Celular/inmunología , Movimiento Celular/inmunología , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Próstata/citología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores CCR7/metabolismo , Proteínas Represoras/inmunología , Linfocitos T Reguladores/citología , Factores de Transcripción/metabolismo , Proteína AIRE
4.
FASEB J ; 34(1): 1247-1269, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914663

RESUMEN

Glycogen synthase kinase 3 (GSK3) was identified as an enzyme regulating sperm protein phosphatase. The GSK3α paralog, but not GSK3ß, is essential for sperm function. Sperm lacking GSK3α display altered motility and are unable to undergo hyperactivation, which is essential for fertilization. Male mice lacking sperm-specific calcineurin (PP2B), a calcium regulated phosphatase, in testis and sperm, are also infertile. Loss of PP2B results in impaired epididymal sperm maturation and motility. The phenotypes of GSK3α and PP2B knockout mice are similar, prompting us to examine the interrelationship between these two enzymes in sperm. High calcium levels must exist to permit catalytically active calcineurin to function during epididymal sperm maturation. Total and free calcium levels are high in immotile compared to motile epididymal sperm. Inhibition of calcineurin by FK506 results in an increase in the net phosphorylation and a consequent decrease in catalytic activity of sperm GSK3. The inhibitor FK506 and an isoform-selective inhibitor of GSK3α, BRD0705, also inhibited fertilization of eggs in vitro. Interrelated functions of GSK3α and sperm PP2B are essential during epididymal sperm maturation and during fertilization. Our results should enable the development of male contraceptives targeting one or both enzymes.


Asunto(s)
Calcineurina/metabolismo , Fertilización , Glucógeno Sintasa Quinasa 3/metabolismo , Motilidad Espermática , Espermatozoides/enzimología , Animales , Calcineurina/genética , Inhibidores de la Calcineurina/farmacología , Epidídimo/metabolismo , Epidídimo/patología , Femenino , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Masculino , Ratones , Ratones Noqueados , Tacrolimus/farmacología
5.
J Immunol ; 202(9): 2628-2635, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30902900

RESUMEN

Deletion of CD8+ T cells by dendritic cells (DCs) is recognized as a critical mechanism of immune tolerance to self-antigens. Although DC-mediated peripheral deletion of autoreactive CD8+ T cells has been demonstrated using T cells reactive to model Ags, its role in shaping the naturally occurring polyclonal CD8+ T cell repertoire has not been defined. Using Batf3-/- mice lacking cross-presenting CD8α+ and CD103+ DCs (also known as type 1 conventional [cDC1]), we demonstrate that peripheral deletion of CD8+ T cells reactive to a model tissue Ag is dependent on cDC1. However, endogenous CD8+ T cells from the periphery of Batf3-/- mice do not exhibit heightened self-reactivity, and deep TCR sequencing of CD8+ T cells from Batf3-/- and Batf3+/+ mice reveals that cDC1 have a minimal impact on shaping the peripheral CD8+ T cell repertoire. Thus, although evident in reductionist systems, deletion of polyclonal self-specific CD8+ T cells by cDC1 plays a negligible role in enforcing tolerance to natural self-ligands.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Tolerancia Inmunológica , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Antígenos CD8/genética , Antígenos CD8/inmunología , Linfocitos T CD8-positivos/citología , Células Dendríticas/citología , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/inmunología , Ratones , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Represoras/genética , Proteínas Represoras/inmunología
6.
J Immunol ; 201(12): 3759-3769, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30420437

RESUMEN

APCs are essential for the orchestration of antitumor T cell responses. Batf3-lineage CD8α+ and CD103+ dendritic cells (DCs), in particular, are required for the spontaneous initiation of CD8+ T cell priming against solid tumors. In contrast, little is known about the APCs that regulate CD8+ T cell responses against hematological malignancies. Using an unbiased approach, we aimed to characterize the APCs responsible for regulating CD8+ T cell responses in a syngeneic murine leukemia model. We show with single-cell resolution that CD8α+ DCs alone acquire and cross-present leukemia Ags in vivo, culminating in the induction of leukemia-specific CD8+ T cell tolerance. Furthermore, we demonstrate that the mere acquisition of leukemia cell cargo is associated with a unique transcriptional program that may be important in regulating tolerogenic CD8α+ DC functions in mice with leukemia. Finally, we show that systemic CD8α+ DC activation with a TLR3 agonist completely prevents their ability to generate leukemia-specific CD8+ T cell tolerance in vivo, resulting instead in the induction of potent antileukemia T cell immunity and prolonged survival of leukemia-bearing mice. Together, our data reveal that Batf3-lineage DCs imprint disparate CD8+ T cell fates in hosts with solid tumors versus systemic leukemia.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/fisiología , Leucemia/inmunología , Proteínas Represoras/metabolismo , Animales , Presentación de Antígeno , Antígenos CD/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Antígenos CD8/metabolismo , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Tolerancia Inmunológica , Cadenas alfa de Integrinas/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Represoras/genética , Receptor Toll-Like 3/agonistas
7.
BMC Dev Biol ; 19(1): 20, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640562

RESUMEN

BACKGROUND: Immature mammalian oocytes are held arrested at prophase I of meiosis by an inhibitory phosphorylation of cyclin-dependent kinase 1 (CDK1). Release from this meiotic arrest and germinal vesicle breakdown is dependent on dephosphorylation of CDK1 by the protein, cell cycle division 25B (CDC25B). Evidence suggests that phosphorylated CDC25B is bound to YWHA (14-3-3) proteins in the cytoplasm of immature oocytes and is thus maintained in an inactive form. The importance of YWHA in meiosis demands additional studies. RESULTS: Messenger RNA for multiple isoforms of the YWHA protein family was detected in mouse oocytes and eggs. All seven mammalian YWHA isoforms previously reported to be expressed in mouse oocytes, were found to interact with CDC25B as evidenced by in situ proximity ligation assays. Interaction of YWHAH with CDC25B was indicated by Förster Resonance Energy Transfer (FRET) microscopy. Intracytoplasmic microinjection of oocytes with R18, a known, synthetic, non-isoform-specific, YWHA-blocking peptide promoted germinal vesicle breakdown. This suggests that inhibiting the interactions between YWHA proteins and their binding partners releases the oocyte from meiotic arrest. Microinjection of isoform-specific, translation-blocking morpholino oligonucleotides to knockdown or downregulate YWHA protein synthesis in oocytes suggested a role for a specific YWHA isoform in maintaining the meiotic arrest. More definitively however, and in contrast to the knockdown experiments, oocyte-specific and global deletion of two isoforms of YWHA, YWHAH (14-3-3 eta) or YWHAE (14-3-3 epsilon) indicated that the complete absence of either or both isoforms does not alter oocyte development and release from the meiotic prophase I arrest. CONCLUSIONS: Multiple isoforms of the YWHA protein are expressed in mouse oocytes and eggs and interact with the cell cycle protein CDC25B, but YWHAH and YWHAE isoforms are not essential for normal mouse oocyte maturation, fertilization and early embryonic development.


Asunto(s)
Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Oocitos/fisiología , Fosfatasas cdc25/metabolismo , Animales , Citoplasma/metabolismo , Desarrollo Embrionario , Femenino , Fertilización , Transferencia Resonante de Energía de Fluorescencia , Meiosis , Ratones , Oocitos/metabolismo , Oogénesis , Isoformas de Proteínas/metabolismo
8.
J Cell Physiol ; 234(3): 3105-3118, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30144392

RESUMEN

The serine/threonine protein phosphatase 1 (PP1) inhibitors PPP1R2, PPP1R7, and PPP1R11 are evolutionarily ancient and highly conserved proteins. Four PP1 isoforms, PP1α, PP1ß, PP1γ1, and PP1γ2, exist; three of them except PP1γ2 are ubiquitous. The fact that PP1γ2 isoform is present only in mammalian testis and sperm led to the notion that isoform-specific regulators for PP1γ2 in sperm may be responsible for its function. In this report, we studied these inhibitors, PPP1R2, R7, and R11, to determine their spatial and temporal expression in testis and their regulatory functions in sperm. We show that, similar to PP1γ2, the three inhibitors are expressed at high levels in developing spermatogenic cells. However, the transcripts for the regulators are expressed as unique sizes in testis compared with somatic tissues. The three regulators share localization with PP1γ2 in the head and the principal piece of sperm. We show that the association of inhibitors to PP1γ2 changes during epididymal sperm maturation. In immotile caput epididymal sperm, PPP1R2 and PPP1R7 are not bound to PP1γ2, whereas in motile caudal sperm, all three inhibitors are bound as heterodimers or heterotrimers. In caudal sperm from male mice lacking sAC and glycogen synthase kinase 3, where motility and fertility are impaired, the association of PP1γ2 to the inhibitors resembles immature caput sperm. Changes in the association of the regulators with PP1γ2, due to their phosphorylation, are part of biochemical mechanisms responsible for the development of motility and fertilizing ability of sperm during their passage through the epididymis.


Asunto(s)
Proteína Fosfatasa 1/genética , Proteínas/genética , Maduración del Esperma/genética , Espermatogénesis/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Epidídimo/crecimiento & desarrollo , Epidídimo/metabolismo , Humanos , Masculino , Ratones , Fosforilación/efectos de los fármacos , Motilidad Espermática/genética , Espermatozoides/crecimiento & desarrollo , Testículo/crecimiento & desarrollo
9.
Biol Reprod ; 100(3): 721-736, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30379985

RESUMEN

Four isoforms of serine/threonine phosphatase type I, PP1α, PP1ß, PP1γ1, and PP1γ2, are derived from three genes. The PP1γ1 and PP1γ2 isoforms are alternately spliced transcripts of the protein phosphatase 1 catalytic subunit gamma gene (Ppp1cc). While PP1γ1 is ubiquitous in somatic cells, PP1γ2 is expressed exclusively in testicular germ cells and sperm. Ppp1cc knockout male mice (-/-), lacking both PP1γ1 and PP1γ2, are sterile due to impaired sperm morphogenesis. Fertility and normal sperm function can be restored by transgenic expression of PP1γ2 alone in testis of Ppp1cc (-/-) mice. The purpose of this study was to determine whether the PP1γ1 isoform is functionally equivalent to PP1γ2 in supporting spermatogenesis and male fertility. Significant levels of transgenic PP1γ1 expression occurred only when the transgene lacked a 1-kb 3΄UTR region immediately following the stop codon of the PP1γ1 transcript. PP1γ1 was also incorporated into sperm at levels comparable to PP1γ2 in sperm from wild-type mice. Spermatogenesis was restored in mice expressing PP1γ1 in the absence of PP1γ2. However, males from the transgenic rescue lines were subfertile. Sperm from the PP1γ1 rescue mice were unable to fertilize eggs in vitro. Intrasperm localization of PP1γ1 and the association of the protein regulators of the phosphatase were altered in epididymal sperm in transgenic PP1γ1 compared to PP1γ2. Thus, the ubiquitous isoform PP1γ1, not normally expressed in differentiating germ cells, could replace PP1γ2 to support spermatogenesis and spermiation. However, PP1γ2, which is the PP1 isoform in mammalian sperm, has an isoform-specific role in supporting normal sperm function and fertility.


Asunto(s)
Infertilidad Masculina/genética , Proteína Fosfatasa 1/metabolismo , Espermatogénesis/genética , Espermatozoides/fisiología , Animales , ADN Complementario , Regulación Enzimológica de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Isoformas de Proteínas , Proteína Fosfatasa 1/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Túbulos Seminíferos/metabolismo , Motilidad Espermática , Espermatogénesis/fisiología
10.
J Cell Physiol ; 233(9): 7239-7252, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29574946

RESUMEN

The multifaceted glycogen synthase kinase (GSK3) has an essential role in sperm and male fertility. Since cyclic AMP (cAMP) plays an important role in sperm function, we investigated whether GSK3 and cAMP pathways may be interrelated. We used GSK3 and soluble adenylyl cyclase (sAC) knockout mice and pharmacological modulators to examine this relationship. Intracellular cAMP levels were found to be significantly lower in sperm lacking GSK3α or GSK3ß. A similar outcome was observed when sperm cells were treated with SB216763, a GSK3 inhibitor. This reduction of cAMP levels was not due to an effect on sperm adenylyl cyclase but was caused by elevated phosphodiesterase (PDE) activity. The PDE4 inhibitor RS25344 or the general PDE inhibitor IBMX could restore cAMP levels in sperm lacking GSK3α or ß-isoform. PDE activity assay also showed that hyperactivated PDE4 contributes in lowering of cAMP levels in GSK3α null sperm suggesting that in wild-type sperm PDE4 activity is kept in check by GSK3. Conversely, PKA being triggered by cAMP, affected GSK3 activity through increasing its phosphorylation. Increased GSK3 phosphorylation also occurred by inhibition of sperm specific protein phosphatase type 1, PP1γ2. The relationship between cAMP, GSK3, and PP1γ2 activities was also confirmed in sperm from sAC null mice. Pull-down assay using recombinant PP1γ2 indicated that PKA, GSK3, and PP1γ2 could exist as a complex. Pharmacological inhibition of GSK3 in mature spermatozoa resulted in significantly reduced fertilization of eggs in vitro. Our results show that cAMP, PKA, and GSK3 are interrelated in regulation of sperm function.


Asunto(s)
AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Espermatozoides/enzimología , Alelos , Animales , Biocatálisis/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Femenino , Fertilización In Vitro , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Inhibidores de Fosfodiesterasa 4/farmacología , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Espermatozoides/efectos de los fármacos
11.
Biol Reprod ; 99(2): 384-394, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29385396

RESUMEN

Glycogen synthase kinase 3 (GSK3) is a highly conserved protein kinase regulating key cellular functions. Its two isoforms, GSK3α and GSK3ß, are encoded by distinct genes. In most tissues the two isoforms are functionally interchangeable, except in the developing embryo where GSK3ß is essential. One functional allele of either of the two isoforms is sufficient to maintain normal tissue functions. Both GSK3 isoforms, present in sperm from several species including human, are suggested to play a role in epididymal initiation of sperm motility. Using genetic approaches, we have tested requirement for each of the two GSK3 isoforms in testis and sperm. Both GSK3 isoforms are expressed at high levels during the onset of spermatogenesis. Conditional knockout of GSK3α, but not GSK3ß, in developing testicular germ cells in mice results in male infertility. Mice lacking one allele each of GSK3α and GSK3ß are fertile. Despite overlapping expression and localization in differentiating spermatids, GSK3ß does not substitute for GSK3α. Loss of GSK3α impairs sperm hexokinase activity resulting in low ATP levels. Net adenine nucleotide levels in caudal sperm lacking GSK3α resemble immature caput epididymal sperm. Changes in the association of the protein phosphatase PP1γ2 with its protein interactors occurring during epididymal sperm maturation is impaired in sperm lacking GSK3α. The isoform-specific requirement for GSK3α is likely due to its specific binding partners in the sperm principal piece. Testis and sperm are unique in their specific requirement of GSK3α for normal function and male fertility.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Infertilidad Masculina/metabolismo , Isoformas de Proteínas/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Alelos , Animales , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Noqueados , Fosforilación , Isoformas de Proteínas/genética , Motilidad Espermática/fisiología , Espermatogénesis/genética
12.
Eur J Immunol ; 44(9): 2603-16, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24975127

RESUMEN

Treg cells and the programed death-1/programed death ligand-1 (PD-1/PD-L1) pathway are both critical for maintaining peripheral tolerance to self-Ags. A significant subset of Treg cells constitutively expresses PD-1, which prompted an investigation into the role of PD-1/PD-L1 interactions in Treg-cell development, function, and induction in vivo. The phenotype and abundance of Treg cells was not significantly altered in PD-1-deficient mice. The thymic development of polyclonal and monospecific Treg cells was not negatively impacted by PD-1 deficiency. The suppressive function of PD-1(-/-) Treg cells was similar to their PD-1(+/+) counterparts both in vitro and in vivo. However, in three different in vivo experimental settings, PD-1(-/-) conventional CD4(+) T cells demonstrated a strikingly diminished tendency toward differentiation into peripherally induced Treg (pTreg) cells. Our results demonstrate that PD-1 is dispensable for thymic Treg-cell development and suppressive function, but is critical for the extrathymic differentiation of pTreg cells in vivo. These data suggest that Ab blockade of the PD-1/PD-L1 pathway may augment T-cell responses by acting directly on conventional T cells, and also by suppressing the differentiation of pTreg cells.


Asunto(s)
Diferenciación Celular/fisiología , Tolerancia Inmunológica/fisiología , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T Reguladores/inmunología , Timo/inmunología , Animales , Ratones , Ratones Noqueados , Receptor de Muerte Celular Programada 1/genética , Linfocitos T Reguladores/citología , Timo/citología
13.
Biol Reprod ; 92(3): 65, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25568307

RESUMEN

The signaling enzyme glycogen synthase kinase 3 (GSK3) exists as two isoforms-GSK3A and GSK3B. Protein phosphorylation by GSK3 has important signaling roles in several cells. In our past work, we found that both isoforms of GSK3 are present in mouse sperm and that catalytic GSK3 activity correlates with motility of sperm from several species. Here, we examined the role of Gsk3a in male fertility using a targeted gene knockout (KO) approach. The mutant mice are viable, but have a male infertility phenotype, while female fertility is unaffected. Testis weights of Gsk3a(-/-) mice are normal and sperm are produced in normal numbers. Although spermatogenesis is apparently unimpaired, sperm motility parameters in vitro are impaired. In addition, the flagellar waveform appears abnormal, characterized by low amplitude of flagellar beat. Sperm ATP levels were lower in Gsk3a(-/-) mice compared to wild-type animals. Protein phosphatase PP1 gamma2 protein levels were unaltered, but its catalytic activity was elevated in KO sperm. Remarkably, tyrosine phosphorylation of hexokinase and capacitation-associated changes in tyrosine phosphorylation of proteins are absent or significantly lower in Gsk3a(-/-) sperm. The GSK3B isoform was present and unaltered in testis and sperm of Gsk3a(-/-) mice, showing the inability of GSK3B to substitute for GSK3A in this context. Our studies show that sperm GSK3A is essential for male fertility. In addition, the GSK3A isoform, with its highly conserved glycine-rich N terminus in mammals, may have an isoform-specific role in its requirement for normal sperm motility and fertility.


Asunto(s)
Glucógeno Sintasa Quinasa 3/deficiencia , Glucógeno Sintasa Quinasa 3/fisiología , Infertilidad Masculina/etiología , Infertilidad Masculina/fisiopatología , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Animales , Modelos Animales de Enfermedad , Genotipo , Glucógeno Sintasa Quinasa 3/genética , Infertilidad Masculina/genética , Isoenzimas , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Fenotipo , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Motilidad Espermática/genética , Espermatogénesis/genética , Espermatogénesis/fisiología
14.
BMC Dev Biol ; 13: 10, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23547714

RESUMEN

BACKGROUND: The 14-3-3 (YWHA) proteins are central mediators in various cellular signaling pathways regulating development and growth, including cell cycle regulation. We previously reported that all seven mammalian 14-3-3 isoforms are expressed in mouse oocytes and eggs and that, 14-3-3η (YWHAH) accumulates and co-localizes in the region of meiotic spindle in mouse eggs matured in vivo. Therefore, we investigated the role of 14-3-3η in spindle formation during mouse oocyte maturation. RESULTS: Examination of oocytes matured in vitro demonstrated that 14-3-3η accumulates in both meiosis I and II spindles. To explore if 14-3-3η interacts directly with α-tubulin in meiotic spindles, we performed an in situ proximity ligation assay that can detect intracellular protein-protein interactions at the single molecule level and which allows visualization of the actual interaction sites. This assay revealed a marked interaction between 14-3-3η and α-tubulin at the metaphase II spindle. To demonstrate a functional role for 14-3-3η in oocyte maturation, mouse oocytes were microinjected with a translation-blocking morpholino oligonucleotide against 14-3-3η mRNA to reduce 14-3-3η protein synthesis during oocyte maturation. Meiotic spindles in those cells were examined by immunofluorescence staining of 14-3-3η and α-tubulin along with observation of DNA. In 76% of cells injected with the morpholino, meiotic spindles were found to be deformed or absent and there was reduced or no accumulation of 14-3-3η in the spindle region. Those cells contained clumped chromosomes, with no polar body formation. Immunofluorescence staining of 14-3-3η and α-tubulin in control eggs matured in vitro from uninjected oocytes and oocytes microinjected with the ineffective, inverted form of a morpholino against 14-3-3η, a morpholino against 14-3-3γ, or deionized water showed normal, bipolar spindles. CONCLUSIONS: The results indicate that 14-3-3η is essential for normal meiotic spindle formation during in vitro maturation of mouse oocytes, in part by interacting with α-tubulin, to regulate the assembly of microtubules. These data add to our understanding of the roles of 14-3-3 proteins in mouse oocyte maturation and mammalian reproduction.


Asunto(s)
Proteínas 14-3-3/fisiología , Meiosis , Oocitos/citología , Proteínas 14-3-3/metabolismo , Animales , Secuencia de Bases , Técnica del Anticuerpo Fluorescente , Ratones , Microscopía Confocal , Oocitos/metabolismo , ARN Mensajero/genética , Tubulina (Proteína)/metabolismo
15.
Toxicol Appl Pharmacol ; 268(1): 17-26, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23357550

RESUMEN

Many environmental contaminants can disrupt the adaptive immune response. Exposure to the ubiquitous aryl hydrocarbon receptor (AhR) ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other agonists suppresses the antibody response. The underlying pathway mechanism by which TCDD alters B cell function is not well understood. The present study investigated the mechanism of AhR-mediated pathways and mode of suppression by which TCDD perturbs terminal differentiation of B cells to plasma cells and thereby impairs antibody production. An integrated approach combining computational pathway modeling and in vitro assays with primary mouse B cells activated by lipopolysaccharide was employed. We demonstrated that suppression of the IgM response by TCDD occurs in an all-or-none (binary) rather than graded mode: i.e., it reduces the number of IgM-secreting cells in a concentration-dependent manner without affecting the IgM content in individual plasma cells. The mathematical model of the gene regulatory circuit underpinning B cell differentiation revealed that two previously identified AhR-regulated pathways, inhibition of signaling protein AP-1 and activation of transcription factor Bach2, could account for the all-or-none mode of suppression. Both pathways disrupt the operation of a bistable-switch circuit that contains transcription factors Bcl6, Prdm1, Pax5, and Bach2 and regulates B cell fate. The model further predicted that by transcriptionally activating Bach2, TCDD might delay B cell differentiation and increase the likelihood of isotype switching, thereby altering the antibody repertoire. In conclusion, the present study revealed the mode and specific pathway mechanisms by which the environmental immunosuppressant TCDD suppresses B cell differentiation.


Asunto(s)
Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Modelos Inmunológicos , Dibenzodioxinas Policloradas/toxicidad , Inmunidad Adaptativa/efectos de los fármacos , Inmunidad Adaptativa/inmunología , Animales , Linfocitos B/inmunología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/antagonistas & inhibidores , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Simulación por Computador , Femenino , Citometría de Flujo , Inmunoglobulina M/inmunología , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Receptores de Hidrocarburo de Aril/inmunología , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/inmunología
16.
Andrology ; 9(1): 312-328, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32657535

RESUMEN

BACKGROUND: Spermatogenesis is a complex biological process highlighted by synthesis and activation of proteins that regulate meiosis and cellular differentiation occur during spermatogenesis. 14-3-3 proteins are adaptor proteins that play critical roles in kinase signaling, especially for regulation of cell cycle and apoptosis in eukaryotic cells. There are seven isoforms of the 14-3-3 family proteins encoded by seven genes (ß, ε, γ, η, θ/τ, ζ and σ). 14-3-3 isoforms have been shown to have many interacting partners in several tissues including testis. OBJECTIVE: While it is known that 14-3-3 proteins are expressed in the functions of testis and spermatozoon, the role for each of the seven isoforms is not known. In this study, we investigated the roles of 14-3-3η and 14-3-3ε isoforms in spermatogenesis. MATERIALS AND METHODS: To study the in vivo function of 14-3-3η and 14-3-3ε in spermatogenesis, we generated testis-specific and global knockout mice for each of 14-3-3η and 14-3-3ε isoforms (CKO and GKO, respectively). Computer-assisted semen analysis was used to assess sperm motility, while immunohistochemical studies were conducted to check spermatogenesis. RESULTS: Although both 14-3-3η and 14-3-3ε isoforms were present in mouse testis, only the expression of 14-3-3ε, but not 14-3-3η, was detected in spermatozoa. Mice lacking 14-3-3η were normal and fertile while 14-3-3ε CKO and GKO males showed infertility. Low sperm count with higher abnormal spermatozoa was seen in 14-3-3ε CKO mice. The motility of 14-3-3ε knockout spermatozoa was lower than that of the control. A reduction in the phosphorylation of both glycogen synthase kinase 3 and PP1γ2 was also seen in spermatozoa from 14-3-3ε CKO mice, suggesting a specific role of 14-3-3ε in spermatogenesis, sperm motility, and fertility. DISCUSSION AND CONCLUSION: This is the first demonstration that of the seven 14-3-3 isoforms, 14-3-3ε is essential for normal sperm function and male fertility.


Asunto(s)
Proteínas 14-3-3/metabolismo , Fertilidad , Espermatogénesis , Espermatozoides/metabolismo , Proteínas 14-3-3/genética , Adenosina Trifosfato/metabolismo , Animales , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Masculino , Ratones Noqueados , Mitocondrias/metabolismo , Proteína Fosfatasa 1/metabolismo , Motilidad Espermática , Espermatozoides/anomalías , Testículo/metabolismo
17.
Methods Mol Biol ; 518: 135-56, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19085140

RESUMEN

Quantitative microinjection is used to introduce known quantities of molecules or probes into single cells to examine cellular function. The relatively large mammalian oocyte or egg is easily manipulated and can be injected with impermeant reagents including a variety of signaling molecules and fluorescent probes. Techniques have been developed to inject picoliter quantities of solution into oocytes and eggs with precision and reliability. The methods described here outline the quantitative injection procedures as they are used to inject mouse oocytes and eggs in a culture dish on the stage on an inverted microscope. The techniques are applicable to the oocytes, eggs, and early embryos of most mammalian species. Included are some general instructions on fabrication of transfer pipettes, holding pipettes, beveled injection pipettes, and equipment for quantitative injection.


Asunto(s)
Microinyecciones/métodos , Oocitos/metabolismo , Acústica , Animales , Fertilización , Ratones
18.
J Immunother Cancer ; 6(1): 50, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29871670

RESUMEN

Anti-cancer immunotherapy is encountering its own checkpoint. Responses are dramatic and long lasting but occur in a subset of tumors and are largely dependent upon the pre-existing immune contexture of individual cancers. Available data suggest that three landscapes best define the cancer microenvironment: immune-active, immune-deserted and immune-excluded. This trichotomy is observable across most solid tumors (although the frequency of each landscape varies depending on tumor tissue of origin) and is associated with cancer prognosis and response to checkpoint inhibitor therapy (CIT). Various gene signatures (e.g. Immunological Constant of Rejection - ICR and Tumor Inflammation Signature - TIS) that delineate these landscapes have been described by different groups. In an effort to explain the mechanisms of cancer immune responsiveness or resistance to CIT, several models have been proposed that are loosely associated with the three landscapes. Here, we propose a strategy to integrate compelling data from various paradigms into a "Theory of Everything". Founded upon this unified theory, we also propose the creation of a task force led by the Society for Immunotherapy of Cancer (SITC) aimed at systematically addressing salient questions relevant to cancer immune responsiveness and immune evasion. This multidisciplinary effort will encompass aspects of genetics, tumor cell biology, and immunology that are pertinent to the understanding of this multifaceted problem.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Tolerancia Inmunológica , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología
19.
Oncoimmunology ; 6(4): e1278332, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28507789

RESUMEN

Exposure of cancer cells to particular chemotherapeutic agents or γ-irradiation induces a form of cell death that stimulates an immune response in mice. This "immunogenic cell death" requires calreticulin (CRT) translocation to the plasma membrane, which has been shown to promote cancer cell phagocytosis. However, it remains unclear whether the effect of CRT on cancer cell phagocytosis is alone sufficient to affect tumor immunity. Acute myeloid leukemia (AML) cells expressing cell-surface CRT were generated in order to characterize the mechanism(s) through which CRT activates tumor immune responses. Potent immune-mediated control or rejection of AML was observed in mice with CRT-expressing leukemia. The "CRT effect" was ultimately T-cell dependent, but dendritic cells (DCs), and CD8α+ DCs in particular, were also necessary, indicating that CRT might act directly on these DCs. CRT-expressing AML cells were slightly more susceptible to phagocytosis by DCs in vivo, but this effect was unlikely to explain the potent immunity observed. CRT did not affect classical DC maturation markers, but induced expression of type I interferon (IFN), which was critical for its positive effect on survival. In conclusion, CRT functions as a "danger signal" that promotes a host type I IFN response associated with the induction of potent leukemia-specific T-cell immunity.

20.
Cell Rep ; 15(11): 2357-66, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27264175

RESUMEN

Type I interferon (IFN), essential for spontaneous T cell priming against solid tumors, is generated through recognition of tumor DNA by STING. Interestingly, we observe that type I IFN is not elicited in animals with disseminated acute myeloid leukemia (AML). Further, survival of leukemia-bearing animals is not diminished in the absence of type I IFN signaling, suggesting that STING may not be triggered by AML. However, the STING agonist, DMXAA, induces expression of IFN-ß and other inflammatory cytokines, promotes dendritic cell (DC) maturation, and results in the striking expansion of leukemia-specific T cells. Systemic DMXAA administration significantly extends survival in two AML models. The therapeutic effect of DMXAA is only partially dependent on host type I IFN signaling, suggesting that other cytokines are important. A synthetic cyclic dinucleotide that also activates human STING provided a similar anti-leukemic effect. These data demonstrate that STING is a promising immunotherapeutic target in AML.


Asunto(s)
Inmunidad Innata , Leucemia Mieloide Aguda/inmunología , Proteínas de la Membrana/metabolismo , Transducción de Señal/efectos de los fármacos , Inmunidad Adaptativa/efectos de los fármacos , Animales , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/metabolismo , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ingeniería Genética , Humanos , Inmunidad Innata/efectos de los fármacos , Memoria Inmunológica/efectos de los fármacos , Interferón Tipo I/metabolismo , Leucemia Mieloide Aguda/patología , Ratones Endogámicos C57BL , Análisis de Supervivencia , Xantonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA