Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Synchrotron Radiat ; 25(Pt 4): 1261-1270, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979189

RESUMEN

Xi-cam is an extensible platform for data management, analysis and visualization. Xi-cam aims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core of Xi-cam is an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. With Xi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data. Xi-cam's plugin-based architecture targets cross-facility and cross-technique collaborative development, in support of multi-modal analysis. Xi-cam is open-source and cross-platform, and available for download on GitHub.

2.
Nano Lett ; 14(5): 2299-304, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24773397

RESUMEN

Ion-conductive polymers, or ionomers, are critical materials for a wide range of electrochemical technologies. For optimizing the complex heterogeneous structures in which they occur, there is a need to elucidate the governing structure-property relationships, especially at nanoscale dimensions where interfacial interactions dominate the overall materials response due to confinement effects. It is widely acknowledged that polymer physical behavior can be drastically altered from the bulk when under confinement and the literature is replete with examples thereof. However, there is a deficit in the understanding of ionomers when confined to the nanoscale, although it is apparent from literature that confinement can influence ionomer properties. Herein we show that as one particular ionomer, Nafion, is confined to thin films, there is a drastic increase in the modulus over the bulk value, and we demonstrate that this stiffening can explain previously observed deviations in materials properties such as water transport and uptake upon confinement. Moreover, we provide insight into the underlying confinement-induced stiffening through the application of a simple theoretical framework based on self-consistent micromechanics. This framework can be applied to other polymer systems and assumes that as the polymer is confined the mechanical response becomes dominated by the modulus of individual polymer chains.

3.
J Am Chem Soc ; 136(43): 15154-7, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25302474

RESUMEN

Three novel polythiophene isomers are reported whereby the only difference in structure relates to the regiochemistry of the solubilizing side chains on the backbone. This is demonstrated to have a significant impact on the optoelectronic properties of the polymers and their propensity to aggregate in solution. These differences are rationalized on the basis of differences in backbone torsion. The polymer with the largest effective conjugation length is demonstrated to exhibit the highest field-effect mobility, with peak values up to 4.6 cm(2) V(-1) s(-1).

5.
J Am Chem Soc ; 134(14): 6177-90, 2012 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-22372611

RESUMEN

We use a systematic approach that combines experimental X-ray diffraction (XRD) and computational modeling based on molecular mechanics and two-dimensional XRD simulations to develop a detailed model of the molecular-scale packing structure of poly(2,5-bis (3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT-C(14)) films. Both uniaxially and biaxially aligned films are used in this comparison and lead to an improved understanding of the molecular-scale orientation and crystal structure. We then examine how individual polymer components (i.e., conjugated backbone and alkyl side chains) contribute to the complete diffraction pattern, and how modest changes to a particular component orientation (e.g., backbone or side-chain tilt) influence the diffraction pattern. The effects on the polymer crystal structure of varying the alkyl side-chain length from C(12) to C(14) and C(16) are also studied. The accurate determination of the three-dimensional polymer structure allows us to examine the PBTTT electronic band structure and intermolecular electronic couplings (transfer integrals) as a function of alkyl side-chain length. This combination of theoretical and experimental techniques proves to be an important tool to help establish the relationship between the structural and electronic properties of polymer thin films.

6.
J Am Chem Soc ; 133(3): 412-5, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21155572

RESUMEN

The blend films of small-molecule semiconductors with insulating polymers exhibit not only excellent solution processability but also superior performance characteristics in organic thin-film transistors (OTFTs) over those of neat small-molecule semiconductors. To understand the underlying mechanism, we studied triethylsilylethynyl anthradithiophene (TESADT) with small amounts of impurity formed by weak UV exposure. OTFTs with neat impure TESADT had drastically reduced field-effect mobility (<10(-5) cm(2)/(V s)), and a disappearance of the high-temperature crystal phase was observed for neat impure TESADT. However, the mobility of the blend films of the UV-exposed TESADT with poly(α-methylstyrene) (PαMS) is recovered to that of a fresh TESADT-PαMS blend (0.040 cm(2)/(V s)), and the phase transition characteristics partly return to those of fresh TESADT films. These results are corroborated by OTFT results on "aged" TIPS-pentacene. These observations, coupled with the results of neutron reflectivity study, indicate that the formation of a vertically phase-separated layer of crystalline small-molecule semiconductors allows the impurity species to remain preferentially in the adjacent polymer-rich layer. Such a "zone-refinement effect" in blend semiconductors effectively removes the impurity species that are detrimental to organic electronic devices from the critical charge-transporting interface region.

7.
J Am Chem Soc ; 133(38): 15073-84, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21815633

RESUMEN

We describe a series of highly soluble diketo pyrrolo-pyrrole (DPP)-bithiophene copolymers exhibiting field effect hole mobilities up to 0.74 cm(2) V(-1) s(-1), with a common synthetic motif of bulky 2-octyldodecyl side groups on the conjugated backbone. Spectroscopy, diffraction, and microscopy measurements reveal a transition in molecular packing behavior from a preferentially edge-on orientation of the conjugated plane to a preferentially face-on orientation as the attachment density of the side chains increases. Thermal annealing generally reduces both the face-on population and the misoriented edge-on domains. The highest hole mobilities of this series were obtained from edge-on molecular packing and in-plane liquid-crystalline texture, but films with a bimodal orientation distribution and no discernible in-plane texture exhibited surprisingly comparable mobilities. The high hole mobility may therefore arise from the molecular packing feature common to the entire polymer series: backbones that are strictly oriented parallel to the substrate plane and coplanar with other backbones in the same layer.


Asunto(s)
Polímeros/química , Pirroles/química , Estructura Molecular , Tamaño de la Partícula , Polímeros/síntesis química , Semiconductores , Estereoisomerismo , Propiedades de Superficie , Tiofenos/química
8.
ACS Nano ; 15(6): 9577-9587, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34014640

RESUMEN

Interactions between polymers and surfaces can be used to influence properties including mechanical performance in nanocomposites, the glass transition temperature, and the orientation of thin film block copolymers (BCPs). In this work we investigate how specific interactions between the substrate and BCPs with varying substrate affinity impact the interfacial width between polymer components. The interface width is generally assumed to be a function of the BCP properties and independent of the surface affinity or substrate proximity. Using resonant soft X-ray reflectivity the optical constants of the film can be controlled by changing the incident energy, thereby varying the depth sensitivity of the measurement. Resonant soft X-ray reflectivity measurements were conducted on films of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) and PS-b-poly(methyl methacrylate) (PS-b-PMMA), where the thickness of the film was varied from half the periodicity (L0) of the BCP to 5.5 L0. The results of this measurement on the PS-b-P2VP films show a significant expansion of the interface width immediately adjacent to the surface. This is likely caused by the strong adsorption of P2VP to the substrate, which constrains the mobility of the junction points, preventing them from reaching their equilibrium distribution and expanding the observed interface width. The interface width decays toward equilibrium moving away from the substrate, with the decay rate being a function of film thickness below a critical limit. The PMMA block appears to be more mobile, and the BCP interfaces near the substrate match their equilibrium value.

9.
J Phys Condens Matter ; 33(16)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33498032

RESUMEN

We present the design and performance of a polarized resonant soft x-ray scattering (RSoXS) station for soft matter characterization built by the national institute of standards and technology at the national synchrotron light source-II (NSLS-II). The RSoXS station is located within the spectroscopy soft and tender beamline suite at NSLS-II located in Brookhaven national laboratory, New York. Numerous elements of the RSoXS station were designed for optimal performance for measurements on soft matter systems, where it is of critical importance to minimize beam damage and maximize collection efficiency of polarized x-rays. These elements include a novel optical design, sample manipulator and sample environments, as well as detector setups. Finally, we will report the performance of the measurement station, including energy resolution, higher harmonic content and suppression methods, the extent and mitigation of the carbon absorption dip on optics, and the range of polarizations available from the elliptically polarized undulator source.

10.
Chem Mater ; 32(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33100517

RESUMEN

The challenges of patterning next generation integrated circuits have driven the semiconductor industry to look outside of traditional lithographic methods in order to continue cost effective size scaling. The directed self-assembly (DSA) of block copolymers (BCPs) is a nanofabrication technique used to reduce the periodicity of patterns prepared with traditional optical methods. BCPs with large interaction parameters (χ eff), provide access to smaller pitches and reduced interface widths. Larger χ eff is also expected to be correlated with reduced line edge roughness (LER), a critical performance parameter in integrated circuits. One approach to increasing χ eff is blending the BCP with a phase selective additive, such as an Ionic liquid (IL). The IL does not impact the etching rates of either phase, and this enables a direct interrogation of whether the change in interface width driven by higher χ eff translates into lower LER. The effect of the IL on the layer thickness and interface width of a BCP are examined, along with the corresponding changes in LER in a DSA patterned sample. The results demonstrate that increased χ eff through additive blending will not necessarily translate to a lower LER, clarifying an important design criterion for future material systems.

11.
ACS Nano ; 14(12): 17476-17486, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33225683

RESUMEN

Bottlebrush block copolymers (BBCPs) are intriguing architectural variations on linear BCPs with highly tunable structure. Confinement can have a significant impact on polymer assembly, giving rise to changes in morphology, assembly kinetics, and properties like the glass transition. Given that confinement leads to significant changes in the persistence length of bottlebrush homopolymers, it is reasonable to expect that BBCPs will see significant changes in their structure and periodicity relative to the bulk morphology. Understanding how confinement influences assembly will be important for designing BBCPs for thin film applications including membranes, integrated photonic structures, and potentially BCP lithography. In order to study the effects of confinement on BBCP conformation and morphology, a blade coating was used to prepare films with continuous variation in film thickness. Unlike thin films of linear BCPs, islands/holes were not observed, and instead mixtures of parallel and perpendicular morphologies emerge after annealing. The lamellar periodicity (L0) of the morphologies is found to be thickness dependent, increasing L0 with decreasing film thickness for blade coated films. Films coated out of tetrahydrofuran (THF) resulted in a single well-defined lamellar periodicity, verified through atomic force microscopy (AFM) and grazing incidence small-angle X-ray scattering (GISAXS), which increases dramatically from the bulk value (30.6 nm) and continues to increase as the film thickness decreases. The largest observed L0 was 65.5 nm, and this closely approaches the estimated upper limit of 67 nm corresponding to a fully extended backbone in a bilayer arrangement. Films coated out of propylene glycol methyl ether acetate (PGMEA) resulted in a mixture of perpendicular lamellae and a smaller, likely cylindrical morphology. The lamellar portion of the film shows the same thickness dependence as the lamellae observed in the THF coated films. The scaling of the lamellar L0 with respect to film thickness follows predictions for confined semiflexible polymers with weak excluded volume interactions and can be related to models for confinement of DNA. Spin coated films shows the same reduction in periodicity, although at very different film thicknesses. This result suggests that the material has shallow free-energy barriers to transitioning between different L0 and morphologies, a property that could be taken advantage of for patterning diverse structures with a single material.

12.
Sci Adv ; 6(13): eaay5986, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32258402

RESUMEN

Liquid crystal blue phases (BPs) are three-dimensional soft crystals with unit cell sizes orders of magnitude larger than those of classic, atomic crystals. The directed self-assembly of BPs on chemically patterned surfaces uniquely enables detailed in situ resonant soft x-ray scattering measurements of martensitic phase transformations in these systems. The formation of twin lamellae is explicitly identified during the BPII-to-BPI transformation, further corroborating the martensitic nature of this transformation and broadening the analogy between soft and atomic crystal diffusionless phase transformations to include their strain-release mechanisms.

13.
Adv Energy Mater ; 10(8)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071704

RESUMEN

The temperature dependent aggregation behavior of PffBT4T polymers used in organic solar cells plays a critical role in the formation of a favorable morphology in fullerene-based devices. However, there has been little investigation into the impact of donor/acceptor ratio on morphology tuning, especially for non-fullerene acceptors (NFAs). Herein, the influence of composition on morphology is reported for blends of PffBT4T-2DT with two NFAs, O-IDTBR and O-IDFBR. The monotectic phase behavior inferred from differential scanning calorimetry provides qualitative insight into the interplay between solid-liquid and liquid-liquid demixing. Transient absorption spectroscopy suggests that geminate recombination dominates charge decay and that the decay rate is insensitive to composition, corroborated by negligible changes in open-circuit voltage. Exciton lifetimes are also insensitive to composition, which is attributed to the signal being dominated by acceptor excitons which are formed and decay in domains of similar size and purity irrespective of composition. A hierarchical morphology is observed, where the composition dependence of size scales and scattering intensity from resonant soft X-ray scattering (R-SoXS) is dominated by variations in volume fractions of polymer/polymer rich domains. Results suggest an optimal morphology where polymer crystallite size and connectivity are balanced, ensuring a high probability of hole extraction via such domains.

14.
ACS Appl Mater Interfaces ; 12(20): 23399-23409, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32345022

RESUMEN

Polarity-switching photopatternable guidelines can be directly used to both orient and direct the self-assembly of block copolymers. We report the orientation and alignment of poly(styrene-block-4-trimethylsilylstyrene) (PS-b-PTMSS) with a domain periodicity, L0, of 44 nm on thin photopatternable grafting surface treatments (pGSTs) and cross-linkable surface treatments (pXSTs), containing acid-labile 4-tert-butoxystyrene monomer units. The surface treatment was exposed using electron beam lithography to create well-defined linear arrays of neutral and preferential regions. Directed self-assembly (DSA) of PS-b-PTMSS with much lower defectivity was observed on pXST than on pGST guidelines. The study of the effect of film thickness on photoacid diffusion by Fourier transform infrared spectroscopy and near-edge X-ray absorption fine structure spectroscopy suggested slower diffusion in thinner films, potentially enabling production of guidelines with sharper interfaces between the unexposed and exposed lines, and thus, the DSA of PS-b-PTMSS on thinner pXST guidelines resulted in better alignment control.

15.
ACS Appl Mater Interfaces ; 11(3): 3280-3289, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30592202

RESUMEN

Stretchable conductive polymer films are required to survive not only large tensile strain but also stay functional after the reduction in applied strain. In the deformation process, the elastomer substrate that is typically employed plays a critical role in response to the polymer film. In this study, we examine the role of a polydimethylsiloxane (PDMS) elastomer substrate on the ability to achieve stretchable PDPP-4T films. In particular, we consider the adhesion and near-surface modulus of the PDMS tuned through UV/ozone (UVO) treatment on the competition between film wrinkling and plastic deformation. We also consider the role of PDMS tension on the stability of films under cyclic strain. We find that increasing the near-surface modulus of the PDMS and maintaining the PDMS in tension throughout the cyclic strain process promote plastic deformation over film wrinkling. In addition, the UVO treatment increases film adhesion to the PDMS resulting in a significantly reduced film folding and delamination. For a 20 min UVO-treated PDMS, we show that a PDPP-4T film root-mean-square roughness is consistently below 3 nm for up to 100 strain cycles with a strain range of 40%. In addition, although the film is plastically deforming, the microstructural order is largely stable as probed by grazing incidence X-ray scattering and UV-visible spectroscopy. These results highlight the importance of neighboring elastomer characteristics on the ability to achieve stretchable polymer semiconductors.

16.
Artículo en Inglés | MEDLINE | ID: mdl-33033414

RESUMEN

The directed self-assembly (DSA) of block copolymers (BCPs) is a promising low-cost approach to patterning structures with critical dimensions (CDs) which are smaller than can be achieved by traditional photolithography. The CD of contact holes can be reduced by assembling a cylindrical BCP inside a patterned template and utilizing the native size of the cylinder to dictate the reduced dimensions of the hole. This is a particularly promising application of the DSA technique, but in order for this technology to be realized there is a need for three-dimensional metrology of the internal structure of the patterned BCP in order to understand how template properties and processing conditions impact BCP assembly. This is a particularly challenging problem for traditional metrologies owing to the three-dimensional nature of the structure and the buried features. By utilizing small-angle X-ray scattering and changing the angle between the incident beam and sample we can reconstruct the three-dimensional shape profile of the empty template and the residual polymer after self-assembly and removal of one of the phases. A two-dimensional square grid pattern of the holes results in scattering in both in-plane directions, which is simplified by converting to a radial geometry. The shape is then determined by simulating the scattering from a model and iterating that model until the simulated and experimental scattering profiles show a satisfactory match. Samples with two different processing conditions are characterized in order to demonstrate the ability of the technique to evaluate critical features such as residual layer thickness and sidewall height. It was found that the samples had residual layer thicknesses of 15.9 ± 3.2 nm and 4.5 ± 2.2 nm, which were clearly distinguished between the two different DSA processes and in good agreement with focused ion beam scanning transmission electron microscopy (FIBSTEM) observations. The advantage of the X-ray measurements is that FIBSTEM characterizes around ten holes, while there are of the order of 800 000 holes illuminated by the X-ray beam.

17.
Artículo en Inglés | MEDLINE | ID: mdl-33033553

RESUMEN

Optimizing the extraction of information from x-ray measurements while minimizing exposure time is an important area of research in a variety of fields. The semiconductor industry is reaching a point where the traditional optical metrologies need to be augmented in order to better resolve the critical dimensions of structures with feature sizes below 10 nm. Critical dimension small angle x-ray scattering (CDSAXS) is one measurement technique that is capable of characterizing detailed features of periodic nanostructures. As currently implemented, the measurement utilizes the combined scattering from up to 60 different angles. Reducing the number of angles would dramatically improve the feasibility of CDSAXS for implementation in a fabrication setting, but currently there are no clear guidelines as to which angles provide the most information to minimize the uncertainty in the shape of the target structure while maximizing the throughput. In order to develop guidelines for optimizing the angle selection, simulation studies were conducted on a wide variety of structures with subsets of the full angular range to identify which angles minimized the overall shape uncertainty. Analyzing sets of two angle pairs (including all combinations between 0 deg and 60 deg) provides guidance on which angles best constrain the samples. For select samples, higher numbers of angles were included to explore the impact of additional information on the model uncertainty. In general, low angles (<3 deg) best contributed to minimizing the line-width uncertainty, while higher angles near high curvature regions of the scattering profile best constrained the height of the structure. The minimum uncertainty was generally achieved with combinations of the two. This simulation approach can be used to minimize the number of angles measured on real samples and significantly reduce the measurement time.

18.
Macromolecules ; 51(1): 173-180, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29706666

RESUMEN

Advancements in the directed self-assembly of block copolymers (BCPs) have prompted the development of new materials with larger effective interaction parameters (χe). This enables BCP systems with phase separation at increasingly small degrees of polymerization (N). Very often these systems reside near the order-disorder transition and fit between the weak and strong segregation limits where the behavior of BCP systems is not as thoroughly understood. Utilizing resonant soft X-ray reflectivity (RSoXR) enables both the BCP pitch (L0) and interface width (wM) to be determined simultaneously, through a direct characterization of the composition profile of BCP lamellae oriented parallel to a substrate. A series of high χe BCPs with χe ranging from ≈0.04 to 0.25 and χeN from 19 to 70 have been investigated. The L0/wm ratio serves as an important metric for the feasibility of a material for nanopatterning applications; the results of the RSoXR measurement are used to establish a relationship between χe and L0/wm. The results of this analysis are correlated with experimentally established limits for the functionality of BCPs in nanopatterning applications. These results also provide guidance for the magnitude of χe needed to achieve small interface width for samples with sub-10 nm L0.

19.
Mol Syst Des Eng ; 3(2): 376-389, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29892480

RESUMEN

A block copolymer self-consistent field theory (SCFT) model is used for direct analysis of experimental X-ray scattering data obtained from thin films of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) made from directed self-assembly. In a departure from traditional approaches, which reconstruct the real space structure using simple geometric shapes, we build on recent work that has relied on physics-based models to determine shape profiles and extract thermodynamic processing information from the scattering data. More specifically, an SCFT model, coupled to a covariance matrix adaptation evolutionary strategy (CMAES), is used to find the set of simulation parameters for the model that best reproduces the scattering data. The SCFT model is detailed enough to capture the essential physics of the copolymer self-assembly, but sufficiently simple to rapidly produce structure profiles needed for interpreting the scattering data. The ability of the model to produce a matching scattering profile is assessed, and several improvements are proposed in order to more accurately recreate the experimental observations. The predicted parameters are compared to those extracted from model fits via additional experimental methods and with predicted parameters from direct particle-based simulations of the same model, which incorporate the effects of fluctuations. The Flory-Huggins interaction parameter for PS-b-PMMA is found to be in agreement with reported ranges for this material. These results serve to strengthen the case for relying on physics-based models for direct analysis of scattering and light signal based experiments.

20.
Adv Electron Mater ; 3(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28690975

RESUMEN

Intrinsically stretchable semiconductors will facilitate the realization of seamlessly integrated stretchable electronics. However, to date demonstrations of intrinsically stretchable semiconductors have been limited. In this study, a new approach to achieve intrinsically stretchable semiconductors is introduced by blending a rigid high-performance donor-acceptor polymer semiconductor poly[4(4,4dihexadecyl4Hcyclopenta [1,2b:5,4b' ] dithiopen2yl) alt [1,2,5] thiadiazolo [3,4c] pyridine] (PCDTPT) with a ductile polymer semiconductor poly(3hexylthiophene) (P3HT). Under large tensile strains of up to 75%, the polymers are shown to orient in the direction of strain, and when the strain is reduced, the polymers reversibly deform. During cyclic strain, the local packing order of the polymers is shown to be remarkably stable. The saturated field effect charge mobility is shown to be consistently above 0.04 cm2 V-1s-1 for up to 100 strain cycles with strain ranging from 10% to 75% when the film is printed onto a rigid test bed. At the 75% strain state, the charge mobility is consistently above 0.15 cm2 V-1s-1. Ultimately, the polymer blend process introduced here results in an excellent combination of device performance and stretchability providing an effective approach to achieve intrinsically stretchable semiconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA