Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; 15(4): 495-7, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24504732

RESUMEN

No longer in-F-able: fluorine building blocks can be used in polyketide biosynthesis. This represents a more flexible approach to organofluorines than the traditional use of fluorinated starter units in multistep organic syntheses, and will hopefully increase the number of compounds available for drug development.


Asunto(s)
Productos Biológicos/metabolismo , Flúor/química , Biocatálisis , Productos Biológicos/química , Coenzima A/metabolismo , Halogenación , Malonatos/química , Malonatos/metabolismo , Sintasas Poliquetidas/metabolismo , Policétidos/química , Policétidos/metabolismo
2.
Chembiochem ; 15(13): 1991-7, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25044264

RESUMEN

The polyether ionophore monensin is biosynthesized by a polyketide synthase that delivers a mixture of monensins A and B by the incorporation of ethyl- or methyl-malonyl-CoA at its fifth module. Here we present the first computational model of the fifth acyltransferase domain (AT5mon ) of this polyketide synthase, thus affording an investigation of the basis of the relaxed specificity in AT5mon , insights into the activation for the nucleophilic attack on the substrate, and prediction of the incorporation of synthetic malonic acid building blocks by this enzyme. Our predictions are supported by experimental studies, including the isolation of a predicted derivative of the monensin precursor premonensin. The incorporation of non-native building blocks was found to alter the ratio of premonensins A and B. The bioactivity of the natural product derivatives was investigated and revealed binding to prenyl-binding protein. We thus show the potential of engineered biosynthetic polyketides as a source of ligands for biological macromolecules.


Asunto(s)
Productos Biológicos/síntesis química , Monensina/análogos & derivados , Monensina/síntesis química , Sintasas Poliquetidas/química , Aciltransferasas/química , Biología Computacional , Escherichia coli/metabolismo , Fermentación , Malonatos/química , Modelos Moleculares , Monensina/farmacología , Conformación Proteica , Streptomyces/enzimología , Especificidad por Sustrato
3.
Beilstein J Org Chem ; 9: 664-74, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23616811

RESUMEN

Polyketides are biosynthesized through consecutive decarboxylative Claisen condensations between a carboxylic acid and differently substituted malonic acid thioesters, both tethered to the giant polyketide synthase enzymes. Individual malonic acid derivatives are typically required to be activated as coenzyme A-thioesters prior to their enzyme-catalyzed transfer onto the polyketide synthase. Control over the selection of malonic acid building blocks promises great potential for the experimental alteration of polyketide structure and bioactivity. One requirement for this endeavor is the supplementation of the bacterial polyketide fermentation system with tailored synthetic thioester-activated malonates. The membrane permeable N-acetylcysteamine has been proposed as a coenzyme A-mimic for this purpose. Here, the incorporation efficiency into different polyketides of N-acetylcysteamine activated methylmalonate is studied and quantified, showing a surprisingly high and transferable activity of these polyketide synthase substrate analogues in vivo.

4.
Data Brief ; 5: 528-36, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26587559

RESUMEN

Enzyme-directed mutasynthesis is an emerging strategy for the targeted derivatization of natural products. Here, data on the synthesis of malonic acid derivatives for feeding studies in Saccharopolyspora erythraea , the mutagenesis of DEBS and bioanalytical data on the experimental investigation of studies on the biosynthetic pathway towards erythromycin are presented.

5.
Chem Biol ; 22(11): 1425-1430, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26526102

RESUMEN

Polyketides are natural products frequently used for the treatment of various diseases, but their structural complexity hinders efficient derivatization. In this context, we recently introduced enzyme-directed mutasynthesis to incorporate non-native extender units into the biosynthesis of erythromycin. Modeling and mutagenesis studies led to the discovery of a variant of an acyltransferase domain in the erythromycin polyketide synthase capable of accepting a propargylated substrate. Here, we extend molecular rationalization of enzyme-substrate interactions through modeling, to investigate the incorporation of substrates with different degrees of saturation of the malonic acid side chain. This allowed the engineered biosynthesis of new erythromycin derivatives and the introduction of additional mutations into the AT domain for a further shift of the enzyme's substrate scope. Our approach yields non-native polyketide structures with functional groups that will simplify future derivatization approaches, and provides a blueprint for the engineering of AT domains to achieve efficient polyketide synthase diversification.


Asunto(s)
Aciltransferasas/metabolismo , Policétidos/metabolismo , Aciltransferasas/genética , Antibacterianos/química , Antibacterianos/metabolismo , Eritromicina/análogos & derivados , Eritromicina/biosíntesis , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Sintasas Poliquetidas/química , Estructura Terciaria de Proteína , Especificidad por Sustrato
6.
Chem Commun (Camb) ; 49(39): 4337-9, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23295536

RESUMEN

Herein preparative scale access to the shared precursor of the fusicoccane family of diterpenoids through biosynthesis in three different microbial hosts is reported. A method to purify the metabolite in high purity and on a preparative scale was explored.


Asunto(s)
Diterpenos/metabolismo , Alternaria/enzimología , Biocatálisis , Cladosporium/metabolismo , Diterpenos/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hemiterpenos/química , Compuestos Organofosforados/química
7.
ACS Chem Biol ; 8(2): 443-50, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23181268

RESUMEN

Acyltransferase domains control the extender unit recognition in Polyketide Synthases (PKS) and thereby the side-chain diversity of the resulting natural products. The enzyme engineering strategy presented here allows the alteration of the acyltransferase substrate profile to enable an engineered biosynthesis of natural product derivatives through the incorporation of a synthetic malonic acid thioester. Experimental sequence-function correlations combined with computational modeling revealed the origins of substrate recognition in these PKS domains and enabled a targeted mutagenesis. We show how a single point mutation was able to direct the incorporation of a malonic acid building block with a non-native functional group into erythromycin. This approach, introduced here as enzyme-directed mutasynthesis, opens a new field of possibilities beyond the state of the art for the combination of organic chemistry and biosynthesis toward natural product analogues.


Asunto(s)
Mutación Puntual , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Ingeniería de Proteínas , Aciltransferasas/química , Aciltransferasas/genética , Aciltransferasas/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Eritromicina/metabolismo , Malonatos/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Estructura Molecular , Sintasas Poliquetidas/química , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA