Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 14(34): 12014-21, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22850620

RESUMEN

We report on reversible changes of the work function (WF) values of indium-tin-oxide (ITO) under prolonged ultraviolet (UV) and air exposure. The WF of ITO is reduced from 4.7 eV to 4.2 eV by photon absorption in ITO under UV illumination or an air mass 1.5 solar simulator (100 mW cm(-2)). Air or oxygen exposure is found to increase the WF of ITO (UV-exposed) to a value of 4.6 eV. These changes of ITO's WF lead to reversible variations of the performance of organic photovoltaic devices where ITO acts primarily as the electron collecting or hole collecting electrode. These variations can be reflected in the disappearance (or appearance) of an S-shaped kink in the J-V characteristics upon continuous UV or solar simulator illumination (or air exposure). This reversible phenomenon is ascribed to the adsorption and desorption of oxygen on the surface and grain boundaries of ITO. The use of surface modifiers to either decrease or increase the WF of ITO in organic photovoltaic devices with inverted and conventional geometries is also shown to be an effective route to stabilize the device performance under UV illumination.

2.
ACS Appl Mater Interfaces ; 6(5): 3378-86, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24524341

RESUMEN

We report on a systematic investigation on the performance and stability of p-channel and n-channel top-gate OFETs, with a CYTOP/Al2O3 bilayer gate dielectric, exposed to controlled dry oxygen and humid atmospheres. Despite the severe conditions of environmental exposure, p-channel and n-channel top-gate OFETs show only minor changes of their performance parameters without undergoing irreversible damage. When correlated with the conditions of environmental exposure, these changes provide new insight into the possible physical mechanisms in the presence of oxygen and water. Photoexcited charge collection spectroscopy experiments provided further evidence of oxygen and water effects on OFETs. Top-gate OFETs also display outstanding durability, even when exposed to oxygen plasma and subsequent immersion in water or operated under aqueous media. These remarkable properties arise as a consequence of the use of relatively air stable organic semiconductors and proper engineering of the OFET structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA