RESUMEN
PURPOSE: To investigate the xenobiotic profiles of patients with neovascular age-related macular degeneration (nAMD) undergoing anti-vascular endothelial growth factor (anti-VEGF) intravitreal therapy (IVT) to identify biomarkers indicative of clinical phenotypes through advanced AI methodologies. METHODS: In this cross-sectional observational study, we analyzed 156 peripheral blood xenobiotic features in a cohort of 46 nAMD patients stratified by choroidal neovascularization (CNV) control under anti-VEGF IVT. We employed Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for measurement and leveraged an AI-driven iterative Random Forests (iRF) approach for robust pattern recognition and feature selection, aligning molecular profiles with clinical phenotypes. RESULTS: AI-augmented iRF models effectively refined the metabolite spectrum by discarding non-predictive elements. Perfluorooctanesulfonate (PFOS) and Ethyl ß-glucopyranoside were identified as significant biomarkers through this process, associated with various clinically relevant phenotypes. Unlike single metabolite classes, drug metabolites were distinctly correlated with subretinal fluid presence. CONCLUSIONS: This study underscores the enhanced capability of AI, particularly iRF, in dissecting complex metabolomic data to elucidate the xenobiotic landscape of nAMD and environmental impact on the disease. The preliminary biomarkers discovered offer promising directions for personalized treatment strategies, although further validation in broader cohorts is essential for clinical application.
RESUMEN
There is early evidence of extraocular systemic signals effecting function and morphology in neovascular age-related macular degeneration (nAMD). The prospective, cross-sectional BIOMAC study is an explorative investigation of peripheral blood proteome profiles and matched clinical features to uncover systemic determinacy in nAMD under anti-vascular endothelial growth factor intravitreal therapy (anti-VEGF IVT). It includes 46 nAMD patients stratified by the level of disease control under ongoing anti-VEGF treatment. Proteomic profiles in peripheral blood samples of every patient were detected with LC-MS/MS mass spectrometry. The patients underwent extensive clinical examination with a focus on macular function and morphology. In silico analysis includes unbiased dimensionality reduction and clustering, a subsequent annotation of clinical features, and non-linear models for recognition of underlying patterns. The model assessment was performed using leave-one-out cross validation. The findings provide an exploratory demonstration of the link between systemic proteomic signals and macular disease pattern using and validating non-linear classification models. Three main results were obtained: (1) Proteome-based clustering identifies two distinct patient subclusters with the smaller one (n = 10) exhibiting a strong signature for oxidative stress response. Matching the relevant meta-features on the individual patient's level identifies pulmonary dysfunction as an underlying health condition in these patients. (2) We identify biomarkers for nAMD disease features with Aldolase C as a putative factor associated with superior disease control under ongoing anti-VEGF treatment. (3) Apart from this, isolated protein markers are only weakly correlated with nAMD disease expression. In contrast, applying a non-linear classification model identifies complex molecular patterns hidden in a high number of proteomic dimensions determining macular disease expression. In conclusion, so far unconsidered systemic signals in the peripheral blood proteome contribute to the clinically observed phenotype of nAMD, which should be examined in future translational research on AMD.
Asunto(s)
Inhibidores de la Angiogénesis , Degeneración Macular , Humanos , Inhibidores de la Angiogénesis/uso terapéutico , Ranibizumab/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteoma , Estudios Prospectivos , Cromatografía Liquida , Estudios Transversales , Proteómica , Espectrometría de Masas en Tándem , Degeneración Macular/tratamiento farmacológico , FenotipoRESUMEN
Purpose: We aimed to determine the impact of artificial sweeteners (AS), especially saccharin, on the progression and treatment efficacy of patients with neovascular age-related macular degeneration (nAMD) under anti-vascular endothelial growth factor (anti-VEGF-A) treatment. Methods: In a cross-sectional study involving 46 patients with nAMD undergoing intravitreal anti-VEGF therapy, 6 AS metabolites were detected in peripheral blood using liquid chromatography - tandem mass spectrometry (LC-MS/MS). Disease features were statistically tested against these metabolite levels. Additionally, a murine choroidal neovascularization (CNV) model, induced by laser, was used to evaluate the effects of orally administered saccharin, assessing both imaging outcomes and gene expression patterns. Polymerase chain reaction (PCR) methods were used to evaluate functional expression of sweet taste receptors in a retinal pigment epithelium (RPE) cell line. Results: Saccharin levels in blood were significantly higher in patients with well-controlled CNV activity (P = 0.004) and those without subretinal hyper-reflective material (P = 0.015). In the murine model, saccharin-treated mice exhibited fewer leaking laser scars, lesser occurrence of bleeding, smaller fibrotic areas (P < 0.05), and a 40% decrease in mononuclear phagocyte accumulation (P = 0.06). Gene analysis indicated downregulation of inflammatory and VEGFR-1 response genes in the treated animals. Human RPE cells expressed taste receptor type 1 member 3 (TAS1R3) mRNA and reacted to saccharin stimulation with changes in mRNA expression. Conclusions: Saccharin appears to play a protective role in patients with nAMD undergoing intravitreal anti-VEGF treatment, aiding in better pathological lesion control and scar reduction. The murine study supports this observation, proposing saccharin's potential in mitigating pathological VEGFR-1-induced immune responses potentially via the RPE sensing saccharin in the blood stream.