Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Exp Parasitol ; 254: 108618, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37696327

RESUMEN

Schistosomiasis is a major public health concern worldwide. Although praziquantel is currently available as the only treatment option for schistosomiasis, the absence of reliable diagnostic and prognostic tools highlights the need for the identification and characterization of new drug targets. Recently, we identified the B. glabrata homolog (accession number XP_013075832.1) of human CAXIV, showing 37% amino acid sequence identity, from a BLAST search in NCBI (National Center for Biotechnology Information). Carbonic Anhydrases (CAs) are metalloenzymes that catalyze the reversible hydration/dehydration of CO2/HCO3. These enzymes are associated with many physiological processes, and their role in tumorigenesis has been widely implicated. CAs create an acidic extracellular environment that facilitates the survival, metastasis, and growth of cancer cells. In this study, we investigated the role of CA inhibition in B. glabrata snails exposed to S. mansoni miracidia. We analyzed the expression of the B. glabrata CA encoding transcript in juvenile susceptible and resistant snails, with and without exposure to S. mansoni. Our results showed that the expression of the CA mRNA encoding transcript was upregulated during early and prolonged infection in susceptible snails (BBO2), but not in the resistant BS-90 stock. Notably, sodium salicylate, a form of aspirin, inhibited the expression of CA, post-exposure, to the parasite. Increasing research between parasites and cancer has shown that schistosomes and cancer cells share similarities in their capacity to proliferate, survive, and evade host immune mechanisms. Here, we show that this model system is a potential new avenue for understanding the role of CA in the metastasis and proliferation of cancer cells. Further studies are needed to explore the potential of CA as a biomarker for infection in other schistosomiasis-causing parasites, including S. japonicum and S. haematobium.

2.
PLoS Pathog ; 8(4): e1002677, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22577362

RESUMEN

Biomphalaria glabrata snails that display either resistant or susceptible phenotypes to the parasitic trematode, Schistosoma mansoni provide an invaluable resource towards elucidating the molecular basis of the snail-host/schistosome relationship. Previously, we showed that induction of stress genes either after heat-shock or parasite infection was a major feature distinguishing juvenile susceptible snails from their resistant counterparts. In order to examine this apparent association between heat stress and snail susceptibility, we investigated the effect of temperature modulation in the resistant snail stock, BS-90. Here, we show that, incubated for up to 4 hrs at 32°C prior to infection, these resistant snails became susceptible to infection, i.e. shedding cercariae at 5 weeks post exposure (PE) while unstressed resistant snails, as expected, remained resistant. This suggests that susceptibility to infection by this resistant snail phenotype is temperature-sensitive (ts). Additionally, resistant snails treated with the Hsp 90 specific inhibitor, geldanamycin (GA) after heat stress, were no longer susceptible to infection, retaining their resistant phenotype. Consistently, susceptible snail phenotypes treated with 100 mM GA before parasite exposure also remained uninfected. These results provide direct evidence for the induction of stress genes (heat shock proteins; Hsp 70, Hsp 90 and the reverse transcriptase [RT] domain of the nimbus non-LTR retrotransposon) in B. glabrata susceptibility to S. mansoni infection and characterize the resistant BS-90 snails as a temperature-sensitive phenotype. This study of reversing snail susceptibility phenotypes to S. mansoni provides an opportunity to directly track molecular pathway(s) that underlie the B. glabrata snail's ability to either sustain or destroy the S. mansoni parasite.


Asunto(s)
Biomphalaria/inmunología , Biomphalaria/parasitología , Schistosoma mansoni/inmunología , Animales , Biomphalaria/genética , Cercarias/genética , Cercarias/inmunología , Cercarias/parasitología , Susceptibilidad a Enfermedades , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Calefacción , Interacciones Huésped-Parásitos , Inmunidad Innata , Ratones , Fenotipo , Activación Transcripcional
3.
Adv Exp Med Biol ; 773: 263-79, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24563352

RESUMEN

The genomes of a wide range of different organisms are non-randomly organized within interphase nuclei. Chromosomes and genes can be moved rapidly, with direction, to new non-random locations within nuclei upon a stimulus such as a signal to initiate differentiation, quiescence or senescence, or also the application of heat or an infection with a pathogen. It is now becoming increasingly obvious that chromosome and gene position can be altered in diseases such as cancer and other syndromes that are affected by changes to nuclear architecture such as the laminopathies. This repositioning seems to affect gene expression in these cells and may play a role in progression of the disease. We have some evidence in breast cancer cells and in the premature aging disease Hutchinson-Gilford Progeria that an aberrant nuclear envelope may lead to genome repositioning and correction of these nuclear envelope defects can restore proper gene positioning and expression in both disease situations.Although spatial positioning of the genome probably does not entirely control expression of genes, it appears that spatio-epigenetics may enhance the control over gene expression globally and/or is deeply involved in regulating specific sets of genes. A deviation from normal spatial positioning of the genome for a particular cell type could lead to changes that affect the future health of the cell or even an individual.


Asunto(s)
Envejecimiento/genética , Núcleo Celular/metabolismo , Cromosomas Humanos , Infecciones/genética , Interfase , Neoplasias/genética , Humanos , Lamina Tipo A/genética , Mutación
4.
PLoS Negl Trop Dis ; 15(9): e0009094, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34495959

RESUMEN

BACKGROUND: Schistosomiasis remains widespread in many regions despite efforts at its elimination. By examining changes in the transcriptome at the host-pathogen interface in the snail Biomphalaria glabrata and the blood fluke Schistosoma mansoni, we previously demonstrated that an early stress response in juvenile snails, manifested by induction of heat shock protein 70 (Hsp 70) and Hsp 90 and of the reverse transcriptase (RT) domain of the B. glabrata non-LTR- retrotransposon, nimbus, were critical for B. glabrata susceptibility to S. mansoni. Subsequently, juvenile B. glabrata BS-90 snails, resistant to S. mansoni at 25°C become susceptible by the F2 generation when maintained at 32°C, indicating an epigenetic response. METHODOLOGY/PRINCIPAL FINDINGS: To better understand this plasticity in susceptibility of the BS-90 snail, mRNA sequences were examined from S. mansoni exposed juvenile BS-90 snails cultured either at 25°C (non-permissive temperature) or 32°C (permissive). Comparative analysis of transcriptomes from snails cultured at the non-permissive and permissive temperatures revealed that whereas stress related transcripts dominated the transcriptome of susceptible BS-90 juvenile snails at 32°C, transcripts encoding proteins with a role in epigenetics, such as PIWI (BgPiwi), chromobox protein homolog 1 (BgCBx1), histone acetyltransferase (BgHAT), histone deacetylase (BgHDAC) and metallotransferase (BgMT) were highly expressed in those cultured at 25°C. To identify robust candidate transcripts that will underscore the anti-schistosome phenotype in B. glabrata, further validation of the differential expression of the above transcripts was performed by using the resistant BS-90 (25°C) and the BBO2 susceptible snail stock whose genome has now been sequenced and represents an invaluable resource for molecular studies in B. glabrata. A role for BgPiwi in B. glabrata susceptibility to S. mansoni, was further examined by using siRNA corresponding to the BgPiwi encoding transcript to suppress expression of BgPiwi, rendering the resistant BS-90 juvenile snail susceptible to infection at 25°C. Given transposon silencing activity of PIWI as a facet of its role as guardian of the integrity of the genome, we examined the expression of the nimbus RT encoding transcript at 120 min after infection of resistant BS90 piwi-siRNA treated snails. We observed that nimbus RT was upregulated, indicating that modulation of the transcription of the nimbus RT was associated with susceptibility to S. mansoni in BgPiwi-siRNA treated BS-90 snails. Furthermore, treatment of susceptible BBO2 snails with the RT inhibitor lamivudine, before exposure to S. mansoni, blocked S. mansoni infection concurrent with downregulation of the nimbus RT transcript and upregulation of the BgPiwi encoding transcript in the lamivudine-treated, schistosome-exposed susceptible snails. CONCLUSIONS AND SIGNIFICANCE: These findings support a role for the interplay of BgPiwi and nimbus in the epigenetic modulation of plasticity of resistance/susceptibility in the snail-schistosome relationship.


Asunto(s)
Proteínas Argonautas/metabolismo , Biomphalaria/parasitología , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Parásitos/genética , Schistosoma mansoni/fisiología , Animales , Proteínas Argonautas/genética , Vectores de Enfermedades , Silenciador del Gen , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico , Interacciones Huésped-Parásitos/inmunología , Retroelementos , Regulación hacia Arriba
5.
Exp Parasitol ; 123(3): 203-11, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19660454

RESUMEN

Schistosomes develop successfully in susceptible snails but are encapsulated and killed in resistant ones. Mechanism(s) shaping these outcomes involves the parasites ability to evade the snail's defenses. RNA analysis from resistant (BS-90), non-susceptible (LAC2) and susceptible (NMRI) juvenile Biomphalaria glabrata to Schistosoma mansoni revealed that stress-related genes, heat shock protein 70 (Hsp 70) and reverse transcriptase (RT), were dramatically co-induced early in susceptible snails, but not in resistant/non-susceptible ones. These transcripts were, however, down regulated upon exposure to irradiated parasites although penetration behavior of irradiated vs. normal parasites were the same, indicating that Hsp 70 and RT regulation was elicited by infection and not injury. Understanding molecular events involved in stress response transcriptional regulation of Hsp 70 in juvenile snails could pave a way towards the identification of genes involved in schistosome/snail interactions.


Asunto(s)
Biomphalaria/inmunología , Biomphalaria/parasitología , Proteínas HSP70 de Choque Térmico/biosíntesis , ADN Polimerasa Dirigida por ARN/biosíntesis , Schistosoma mansoni/fisiología , Animales , Biomphalaria/genética , Regulación hacia Abajo/inmunología , Rayos gamma , Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , ADN Polimerasa Dirigida por ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Schistosoma mansoni/inmunología , Schistosoma mansoni/efectos de la radiación , Activación Transcripcional/inmunología
7.
J Parasitol ; 94(3): 659-68, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18605796

RESUMEN

Biomphalaria glabrata snails are known to display a wide range of susceptibility phenotypes to Schistosoma mansoni infection depending on the genetics of both the snail and the invading parasite. Evidence exists for a role of hydrolytic enzymes in the defense of molluscs against invading parasites. To elucidate the role of these enzymes in the outcome of infection in the snail, proteolysis was examined in parasite-resistant and -susceptible snails. Zymographs of extracts from the whole snail or hepatopancreas indicated higher proteolytic activity in resistant, compared with susceptible, snails. Lytic activity coincided with a high-molecular-weight smear (220 to 66 kDa) that was abrogated by the cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane. Quantitative flourimetric assays showed 3.5-fold higher activity in resistant than in susceptible snails. From a hepatopancreas cDNA library, several cysteine protease encoding expressed sequence tags including the full-length cDNA for cathepsin B were identified. Sequence analysis revealed that this cathepsin B belonged to the C1A family of peptidases characterized by the presence of the catalytic cysteine-histidine dyad, the "occluding loop," signal sequence, and cleavage sites for the prepro and propeptides. Quantitative real-time reverse transcriptase-polymerase chain reaction showed higher up-regulation of cathepsin B transcript in resistant than in the susceptible snail after parasite exposure.


Asunto(s)
Biomphalaria/enzimología , Biomphalaria/parasitología , Catepsina B/genética , Schistosoma mansoni/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biomphalaria/inmunología , Catepsina B/química , Catepsina B/metabolismo , Cumarinas/metabolismo , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , ADN Complementario/química , ADN Complementario/aislamiento & purificación , Dipéptidos/metabolismo , Electroforesis en Gel de Poliacrilamida , Etiquetas de Secuencia Expresada , Colorantes Fluorescentes/metabolismo , Fluorometría , Biblioteca de Genes , Hepatopáncreas/enzimología , Interacciones Huésped-Parásitos/fisiología , Inmunidad Innata/fisiología , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Int J Parasitol ; 37(12): 1307-18, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17521654

RESUMEN

The freshwater snail Biomphalaria glabrata is closely associated with the transmission of human schistosomiasis. An ecologically sound method has been proposed to control schistosomiasis using genetically modified snails to displace endemic, susceptible ones. To assess the viability of this form of biological control, studies towards understanding the molecular makeup of the snail relative to the presence of endogenous mobile genetic elements are being undertaken since they can be exploited for genetic transformation studies. We previously cloned a 1.95kb BamHI fragment in B. glabrata (BGR2) with sequence similarity to the human long interspersed nuclear element (LINE or L1). A contiguous, full-length sequence corresponding to BGR2, hereafter-named nimbus (BgI), has been identified from a B. glabrata bacterial artificial chromosome (BAC) library. Sequence analysis of the 65,764bp BAC insert contained one full-length, complete nimbus (BgI) element (element I), two full-length elements (elements II and III) containing deletions and flanked by target site duplications and 10 truncated copies. The intact nimbus (BgI) contained two open-reading frames (ORFs 1 and 2) encoding the characteristic hallmark domains found in non-long terminal repeat retrotransposons belonging to the I-clade; a nucleic acid binding protein in ORF1 and an apurinic/apyrimidinic endonuclease, reverse transcriptase and RNase H in ORF2. Phylogenetic analysis revealed that nimbus (BgI) is closely related to Drosophila (I factor), mosquito Aedes aegypti (MosquI) and chordate ascidian Ciona intestinalis (CiI) retrotransposons. Nimbus (BgI) represents the first complete mobile element characterised from a mollusk that appears to be transcriptionally active and is widely distributed in snails of the neotropics and the Old World.


Asunto(s)
Biomphalaria/parasitología , ADN de Helmintos/genética , Genoma/genética , Retroelementos/genética , Schistosoma mansoni/genética , Esquistosomiasis/parasitología , Animales , Cromosomas Artificiales Bacterianos , Genes de Helminto/genética , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , ADN Polimerasa Dirigida por ARN , Schistosoma mansoni/parasitología , Esquistosomiasis/genética , Esquistosomiasis/prevención & control , Análisis de Secuencia de ADN , Secuencias Repetidas Terminales/genética , Transgenes
10.
Nat Commun ; 8: 15451, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28508897

RESUMEN

Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis.


Asunto(s)
Biomphalaria/genética , Biomphalaria/parasitología , Genoma , Esquistosomiasis mansoni/transmisión , Comunicación Animal , Animales , Biomphalaria/inmunología , Elementos Transponibles de ADN , Evolución Molecular , Agua Dulce , Regulación de la Expresión Génica , Interacciones Huésped-Parásitos , Feromonas , Proteoma , Schistosoma mansoni , Análisis de Secuencia de ADN , Estrés Fisiológico
11.
Trends Parasitol ; 22(4): 148-51, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16497557

RESUMEN

In 2001, ideas for a snail genome project were discussed at the American Society of Parasitologists meeting (New Mexico) and a snail genome consortium was subsequently established (the first consortium meeting was held in 2005). A proposal for sequencing the snail genome was submitted to the National Human Genome Research Institute, and Biomphalaria glabrata was prioritized as a non-mammalian sequencing target in 2004. The sequencing of the genome of this medically important snail is now underway.


Asunto(s)
Biomphalaria/genética , Genoma/genética , Genómica , Animales , Interacciones Huésped-Parásitos , Investigación/tendencias , Esquistosomiasis/prevención & control
12.
Int J Parasitol ; 46(7): 389-94, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27056272

RESUMEN

Blood flukes are the causative agent of schistosomiasis - a major neglected tropical disease that remains endemic in numerous countries of the tropics and sub-tropics. During the past decade, a concerted effort has been made to control the spread of schistosomiasis, using a drug intervention program aimed at curtailing transmission. These efforts notwithstanding, schistosomiasis has re-emerged in southern Europe, raising concerns that global warming could contribute to the spread of this disease to higher latitude countries where transmission presently does not take place. Vaccines against schistosomiasis are not currently available and reducing transmission by drug intervention programs alone does not prevent reinfection in treated populations. These challenges have spurred awareness that new interventions to control schistosomiasis are needed, especially since the World Health Organization hopes to eradicate the disease by 2025. For one of the major species of human schistosomes, Schistosoma mansoni, the causative agent of hepatointestinal schistosomiasis in Africa and the Western Hemisphere, freshwater snails of the genus Biomphalaria serve as the obligate intermediate host of this parasite. To determine mechanisms that underlie parasitism by S. mansoni of Biomphalaria glabrata, which might be manipulated to block the development of intramolluscan larval stages of the parasite, we focused effort on the impact of schistosome infection on the epigenome of the snail. Results to date reveal a complex relationship, manifested by the ability of the schistosome to manipulate the snail genome, including the expression of specific genes. Notably, the parasite subverts the stress response of the host to ensure productive parasitism. Indeed, in isolates of B. glabrata native to central and South America, susceptible to infection with S. mansoni, the heat shock protein 70 (Bg-HSP70) gene of this snail is rapidly relocated in the nucleus and transcribed to express HSP70. Concurrently, hypomethylation of the CpG sites, within the Bg-HSP70 intergenic DNA region, proceeds by conveying epigenetic and spatio-epigenetic mechanisms in temporal concordance. It is notable that this is only the second example reported where a pathogen has been shown to control host cell spatio-epigenetics for its own advantage. Nonetheless, the remarkable mechanisms through which genes become activated i.e. DNA and chromatin remodeling and relocation to a nuclear compartment conducive to gene expression may represent novel intervention targets.


Asunto(s)
Biomphalaria/parasitología , Epigénesis Genética/fisiología , Schistosoma mansoni/fisiología , Animales , Biomphalaria/genética , Biomphalaria/inmunología , Vectores de Enfermedades , Interacciones Huésped-Parásitos , Humanos , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/transmisión
13.
Int J Parasitol ; 45(8): 527-35, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25907768

RESUMEN

The invertebrate cell line, Bge, from embryos of the snail Biomphalaria glabrata, remains to date the only established cell line from any species of the Phylum Mollusca. Since its establishment in 1976 by Eder Hansen, few studies have focused on profiling its cytometrics, growth characteristics or sensitivity to xenobiotics. Bge cells are reputed to be challenging to propagate and maintain. Therefore, even though this cell line is a noteworthy resource, it has not been studied widely. With growing interest in functional genomics, including genetic transformation, to elucidate molecular aspects of the snail intermediate hosts responsible for transmission of schistosomiasis, and aiming to enhance the convenience of maintenance of this molluscan cell line, we deployed the xCELLigene real time approach to study Bge cells. Doubling times for three isolates of Bge, termed CB, SL and UK, were longer than for mammalian cell lines - longer than 40 h in complete Bge medium supplemented with 7% fetal bovine serum at 25°C, ranging from ∼42 h to ∼157 h when 40,000 cells were seeded. To assess the potential of the cells for genetic transformation, antibiotic selection was explored. Bge cells were sensitive to the aminonucleoside antibiotic puromycin (from Streptomyces alboniger) from 5 µg/ml to 200 ng/ml, displaying a half maximal inhibitory concentration (IC50) of ∼1.91 µg/ml. Sensitivity to puromycin, and a relatively quick kill time (<48 h in 5 µg/ml) facilitated use of this antibiotic, together with the cognate resistance gene (puromycin N-acetyl-transferase) for selection of Bge cells transformed with the PAC gene (puroR). Bge cells transfected with a plasmid encoding puroR were partially rescued when cultured in the presence of 5 µg/ml of puromycin. These findings pave the way for the development of functional genomic tools applied to the host-parasite interaction during schistosomiasis and neglected tropical trematodiases at large.


Asunto(s)
Antibacterianos/farmacología , Biomphalaria/genética , Schistosoma mansoni/fisiología , Animales , Biomphalaria/efectos de los fármacos , Biomphalaria/embriología , Biomphalaria/parasitología , Línea Celular , Interacciones Huésped-Parásitos , Puromicina/farmacología , Xenobióticos/farmacología
14.
Artículo en Inglés | MEDLINE | ID: mdl-26504668

RESUMEN

The freshwater snail, Biomphalaria glabrata is the obligate intermediate host for the transmission of the parasitic trematode, Schistosoma mansoni the causative agent of the chronic debilitating neglected tropical disease, schistosomiasis. We showed previously that in juvenile snails, early and significant induction of stress manifested by the expression of stress proteins, Hsp 70, Hsp 90 and reverse transcriptase (RT) of the non- LTR retrotransposon, nimbus, is a characteristic feature of juvenile susceptible NMRI but not resistant BS-90 snails. These latter, however, could be rendered susceptible after mild heat shock at 32°C, revealing that resistance in the BS-90 resistant snail to schistosomes is a temperature dependent trait. Here we tested the hypothesis that maintenance of BS-90 resistant snails at the permissive temperature for several generations affects the resistance phenotype displayed at the non-permissive temperature of 25°C. The progeny of BS-90 snails bred and maintained through several generations (F1 to F4) at 32°C were susceptible to the schistosome infection when returned to room temperature, shedding cercariae at four weeks post-infection. Moreover, the study of expression levels of the heat shock protein (Hsp) 70 protein by ELISA and western blot analysis, showed that this protein is also differentially expressed between susceptible and resistant snails, with susceptible snails expressing more protein than their resistant counterparts after early exposure to wild-type but not to radiation-attenuated miracidia. These data suggested that in the face of global warming, the ability to sustain a reduction in schistosomiasis by using refractory snails as a strategy to block transmission of the disease might prove challenging since non-lethal elevation in temperature, affects snail susceptibility to S. mansoni.

15.
Mol Biochem Parasitol ; 126(2): 181-91, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12615317

RESUMEN

The internal defense mechanism of the snail Biomphalaria glabrata during a schistosome infection is activated and mediated via the immune effector cells known as hemocytes. Since resistance and susceptibility to schistosome infection is known to be genetically determined, our interest was to use the EST approach as a gene discovery tool to examine transcription profiles in hemocytes of resistant snails pre- and post-exposure to Schistosoma mansoni. Comparative analysis of the transcripts suggested that parasite exposure caused an active metabolic response in the hemocytes. The most abundant transcripts were those showing 23-74% similarity to known reverse transcriptases (RT). Further characterization by RT-PCR indicated the RT transcripts were expressed in normal snails, parasite exposed snails, and the embryonic cell line Bge. To determine whether the occurrence of RT transcripts correlates to the presence of functional enzyme activity in the snails, RT assays were performed from both resistant and susceptible snails, pre- and post-exposure to miracidia, using protein extracts from the head-foot and posterior region tissues. Results indicated that in the resistant snail, RT activity was greater in the posterior region than in the head-foot. After exposure, however, RT activity increased dramatically in the head-foot, with peak activity at 24 h post-exposure. The detection of RT activity in B. glabrata was unexpected and the role of this enzyme in the hemocyte-mediated killing of parasites is not yet known. However, identification of this and other transcripts from these cells by the EST approach provides a useful resource towards elucidating the molecular basis of resistance/susceptibility in this snail-host parasite relationship.


Asunto(s)
Biomphalaria/genética , Hemocitos/parasitología , Schistosoma mansoni/patogenicidad , Secuencia de Aminoácidos , Animales , Biomphalaria/enzimología , Biomphalaria/parasitología , Southern Blotting , Línea Celular , Ciona intestinalis/enzimología , Ciona intestinalis/genética , Etiquetas de Secuencia Expresada , Hemocitos/fisiología , Datos de Secuencia Molecular , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética
16.
PLoS Negl Trop Dis ; 8(9): e3013, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25211244

RESUMEN

Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in other host-pathogen relationships.


Asunto(s)
Biomphalaria/genética , Biomphalaria/parasitología , Cercarias/fisiología , Regulación de la Expresión Génica/fisiología , Transporte de Proteínas/fisiología , Animales , Interacciones Huésped-Parásitos , Datos de Secuencia Molecular , Schistosoma mansoni/genética
17.
Front Genet ; 5: 230, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25101114

RESUMEN

Biomphalaria glabrata snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis in the Western hemisphere. For the past two decades, tremendous advances have been made in research aimed at elucidating the molecular basis of the snail/parasite interaction. The growing concern that there is no vaccine to prevent schistosomiasis and only one effective drug in existence provides the impetus to develop new control strategies based on eliminating schistosomes at the snail-stage of the life cycle. To elucidate why a given snail is not always compatible to each and every schistosome it encounters, B. glabrata that are either resistant or susceptible to a given strain of S. mansoni have been employed to track molecular mechanisms governing the snail/schistosome relationship. With such snails, genetic markers for resistance and susceptibility were identified. Additionally, differential gene expression studies have led to the identification of genes that underlie these phenotypes. Lately, the role of schistosomes in mediating non-random relocation of gene loci has been identified for the first time, making B. glabrata a model organism where chromatin regulation by changes in nuclear architecture, known as spatial epigenetics, orchestrated by a major human parasite can now be investigated. This review will highlight the progress that has been made in using molecular approaches to describe snail/schistosome compatibility issues. Uncovering the signaling networks triggered by schistosomes that provide the impulse to turn genes on and off in the snail host, thereby controlling the outcome of infection, could also yield new insights into anti-parasite mechanism(s) that operate in the human host as well.

18.
PLoS Negl Trop Dis ; 7(7): e2332, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936566

RESUMEN

Schistosomiasis is a serious global problem and the second most devastating parasitic disease following malaria. Parasitic worms of the genus Schistosoma are the causative agents of schistosomiasis and infect more than 240 million people worldwide. The paucity of molecular tools to manipulate schistosome gene expression has made an understanding of genetic pathways in these parasites difficult, increasing the challenge of identifying new potential drugs for treatment. Here, we describe the use of a formulation of polyethyleneimine (PEI) as an alternative to electroporation for the efficacious transfection of genetic material into schistosome parasites. We show efficient expression of genes from a heterologous CMV promoter and from the schistosome Sm23 promoter. Using the schistosome myocyte enhancer factor 2 (SmMef2), a transcriptional activator critical for myogenesis and other developmental pathways, we describe the development of a dominant-negative form of the schistosome Mef2. Using this mutant, we provide evidence that SmMef2 may regulate genes in the WNT pathway. We also show that SmMef2 regulates its own expression levels. These data demonstrate the use of PEI to facilitate effective transfection of nucleic acids into schistosomes, aiding in the study of schistosome gene expression and regulation, and development of genetic tools for the characterization of molecular pathways in these parasites.


Asunto(s)
ADN/metabolismo , Factores de Transcripción MEF2/metabolismo , Parasitología/métodos , Polietileneimina/metabolismo , Schistosoma mansoni/genética , Transfección/métodos , Vía de Señalización Wnt/genética , Animales , Regulación de la Expresión Génica , Factores de Transcripción MEF2/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Regiones Promotoras Genéticas
20.
Int J Parasitol ; 43(8): 669-77, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23643514

RESUMEN

Biomphalaria glabrata susceptibility to Schistosoma mansoni has a strong genetic component, offering the possibility for investigating host-parasite interactions at the molecular level, perhaps leading to novel control approaches. The identification, mapping and molecular characterisation of genes that influence the outcome of parasitic infection in the intermediate snail host is, therefore, seen as fundamental to the control of schistosomiasis. To better understand the evolutionary processes driving disease resistance/susceptibility phenotypes, we previously identified polymorphic random amplification of polymorphic DNA and genomic simple sequence repeats from B. glabrata. In the present study we identified and characterised polymorphic expressed simple sequence repeats markers (Bg-eSSR) from existing B. glabrata expressed sequence tags. Using these markers, and with previously identified genomic simple sequence repeats, genetic linkage mapping for parasite refractory and susceptibility phenotypes, the first known for B. glabrata, was initiated. Data mining of 54,309 expressed sequence tag, produced 660 expressed simple sequence repeats of which dinucleotide motifs (TA)n were the most common (37.88%), followed by trinucleotide (29.55%), mononucleotide (18.64%) and tetranucleotide (10.15%). Penta- and hexanucleotide motifs represented <3% of the Bg-eSSRs identified. While the majority (71%) of Bg-eSSRs were monomorphic between resistant and susceptible snails, several were, however, useful for the construction of a genetic linkage map based on their inheritance in segregating F2 progeny snails derived from crossing juvenile BS-90 and NMRI snails. Polymorphic Bg-eSSRs assorted into six linkage groups at a logarithm of odds score of 3. Interestingly, the heritability of four markers (Prim1_910, Prim1_771, Prim6_1024 and Prim7_823) with juvenile snail resistance were, by t-test, significant (P<0.05) while an allelic marker, Prim24_524, showed linkage with the juvenile snail susceptibility phenotype. On the basis of our results it is possible that the gene(s) controlling juvenile resistance and susceptibility to S. mansoni infection in B. glabrata are not only on the same linkage group but lie within a short distance (42cM) of each other.


Asunto(s)
Biomphalaria/genética , Biomphalaria/parasitología , Mapeo Cromosómico/métodos , Etiquetas de Secuencia Expresada , Ligamiento Genético , Repeticiones de Microsatélite , Schistosoma mansoni/inmunología , Animales , Biomphalaria/inmunología , Interacciones Huésped-Parásitos , Parasitología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA