Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 131(8): 673-686, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36102198

RESUMEN

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a potentially lethal cardiac arrhythmia syndrome triggered by catecholamines released during exercise, stress, or sudden emotion. Variants in the calsequestrin-2 gene (CASQ2), encoding the major calcium (Ca) binding protein in the sarcoplasmic reticulum (SR), are the second most common cause of CPVT. Recently, several CASQ2 gene variants, such as CASQ2-K180R, have been linked to an autosomal dominant form of Casq2-linked CPVT (CPVT2), but the underlying mechanism is not known. METHODS: A K180R mouse model was generated using CRIPSR/Cas9. Heterozygous and homozygous K180R mice were studied using telemetry ECG recordings in vivo. Ventricular cardiomyocytes were isolated and studied using fluorescent Ca indicators and patch clamp. Expression levels and localization of SR Ca-handling proteins were evaluated using Western blotting and immunostaining. Intra-SR Ca kinetics were quantified using low-affinity Ca indicators. RESULTS: K180R mice exhibit an autosomal dominant CPVT phenotype following exercise or catecholamine stress. Upon catecholamine stress, K180R ventricular cardiomyocytes exhibit increased spontaneous SR Ca release events, triggering delayed afterdepolarizations and spontaneous beats. K180R had no effect on levels of Casq2, Casq2 polymers, or other SR Ca-handling proteins. Intra-SR Ca measurements revealed that K180R impaired dynamic intra-SR Ca buffering, resulting in a more rapid rise of free Ca in the SR during diastole. Steady-state SR Ca buffering and total SR Ca content were not changed. Consistent with the reduced dynamic intra-SR buffering, K180R causes reduced SR Ca release refractoriness. CONCLUSIONS: CASQ2-K180R causes CPVT2 via a heretofore unknown mechanism that differs from CASQ2 variants associated with autosomal recessive CPVT2. Unlike autosomal recessive CASQ2 variants, K180R impairs the dynamic buffering of Ca within the SR without affecting total SR Ca content or Casq2 protein levels. Our data provide insight into the molecular mechanism underlying autosomal dominant CPVT2.


Asunto(s)
Retículo Sarcoplasmático , Taquicardia Ventricular , Animales , Ratones , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calsecuestrina/genética , Calsecuestrina/metabolismo , Catecolaminas/metabolismo , Miocitos Cardíacos/metabolismo , Polímeros , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
2.
J Physiol ; 598(14): 2817-2834, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32115705

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced cardiac channelopathy that has a high mortality in untreated patients. Our understanding has grown tremendously since CPVT was first described as a clinical syndrome in 1995. It is now established that the deadly arrhythmias are caused by unregulated 'pathological' calcium release from the sarcoplasmic reticulum (SR), the major calcium storage organelle in striated muscle. Important questions remain regarding the molecular mechanisms that are responsible for the pathological calcium release, regarding the tissue origin of the arrhythmic beats that initiate ventricular tachycardia, and regarding optimal therapeutic approaches. At present, mutations in six genes involved in SR calcium release have been identified as the genetic cause of CPVT: RYR2 (encoding ryanodine receptor calcium release channel), CASQ2 (encoding cardiac calsequestrin), TRDN (encoding triadin), CALM1, CALM2 and CALM3 (encoding identical calmodulin protein). Here, we review each CPVT subtype and how CPVT mutations alter protein function, RyR2 calcium release channel regulation, and cellular calcium handling. We then discuss research and hypotheses surrounding the tissue mechanisms underlying CPVT, such as the pathophysiological role of sinus node dysfunction in CPVT, and whether the arrhythmogenic beats originate from the conduction system or the ventricular working myocardium. Finally, we review the treatments that are available for patients with CPVT, their efficacy, and how therapy could be improved in the future.


Asunto(s)
Taquicardia Ventricular , Calcio/metabolismo , Calsecuestrina/genética , Humanos , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA