Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(23): e2221244120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252999

RESUMEN

Missense variant Ile79Asn in human cardiac troponin T (cTnT-I79N) has been associated with hypertrophic cardiomyopathy and sudden cardiac arrest in juveniles. cTnT-I79N is located in the cTnT N-terminal (TnT1) loop region and is known for its pathological and prognostic relevance. A recent structural study revealed that I79 is part of a hydrophobic interface between the TnT1 loop and actin, which stabilizes the relaxed (OFF) state of the cardiac thin filament. Given the importance of understanding the role of TnT1 loop region in Ca2+ regulation of the cardiac thin filament along with the underlying mechanisms of cTnT-I79N-linked pathogenesis, we investigated the effects of cTnT-I79N on cardiac myofilament function. Transgenic I79N (Tg-I79N) muscle bundles displayed increased myofilament Ca2+ sensitivity, smaller myofilament lattice spacing, and slower crossbridge kinetics. These findings can be attributed to destabilization of the cardiac thin filament's relaxed state resulting in an increased number of crossbridges during Ca2+ activation. Additionally, in the low Ca2+-relaxed state (pCa8), we showed that more myosin heads are in the disordered-relaxed state (DRX) that are more likely to interact with actin in cTnT-I79N muscle bundles. Dysregulation of the myosin super-relaxed state (SRX) and the SRX/DRX equilibrium in cTnT-I79N muscle bundles likely result in increased mobility of myosin heads at pCa8, enhanced actomyosin interactions as evidenced by increased active force at low Ca2+, and increased sinusoidal stiffness. These findings point to a mechanism whereby cTnT-I79N weakens the interaction of the TnT1 loop with the actin filament, which in turn destabilizes the relaxed state of the cardiac thin filament.


Asunto(s)
Miofibrillas , Troponina T , Humanos , Miofibrillas/genética , Miofibrillas/patología , Troponina T/genética , Troponina T/química , Actinas/genética , Mutación , Citoesqueleto de Actina/genética , Miosinas , Calcio
2.
J Biol Chem ; : 107465, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876300

RESUMEN

The voltage-gated potassium ion channel KV11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause Long QT Syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which pharmacological chaperones like E-4031 can rescue. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes of wild-type (WT) KV11.1 or trafficking-deficient channel variants in the presence or absence of E4031. We identified 572 core KV11.1 protein interactors. Trafficking-deficient variants KV11.1-G601S and KV11.1-G601S-G965* had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We confirmed previous findings that the proteasome is critical for KV11.1 degradation. Our report provides the first comprehensive characterization of protein quality control mechanisms of KV11.1. We find extensive interactome remodeling associated with trafficking-deficient KV11.1 variants, and with pharmacological chaperone rescue of KV11.1 cell surface expression. The identified protein interactions could be targeted therapeutically to improve KV11.1 trafficking and treat Long QT Syndrome.

3.
Mol Pharmacol ; 105(3): 194-201, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253398

RESUMEN

Intracellular Ca2+ leak from cardiac ryanodine receptor (RyR2) is an established mechanism of sudden cardiac death (SCD), whereby dysregulated Ca2+ handling causes ventricular arrhythmias. We previously discovered the RyR2-selective inhibitor ent-(+)-verticilide (ent-1), a 24-membered cyclooligomeric depsipeptide that is the enantiomeric form of a natural product (nat-(-)-verticilide). Here, we examined its 18-membered ring-size oligomer (ent-verticilide B1; "ent-B1") in RyR2 single channel and [3H]ryanodine binding assays, and in Casq2 -/- cardiomyocytes and mice, a gene-targeted model of SCD. ent-B1 inhibited RyR2 single channels and RyR2-mediated spontaneous Ca2+ release in Casq2 -/- cardiomyocytes with sub-micromolar potency. ent-B1 was a partial RyR2 inhibitor, with maximal inhibitory efficacy of less than 50%. ent-B1 was stable in plasma, with a peak plasma concentration of 1460 ng/ml at 10 minutes and half-life of 45 minutes after intraperitoneal administration of 3 mg/kg in mice. In vivo, ent-B1 significantly reduced catecholamine-induced ventricular arrhythmias in Casq2 -/- mice in a dose-dependent manner. Hence, we have identified a novel chemical entity - ent-B1 - that preserves the mechanism of action of a hit compound and shows therapeutic efficacy. These findings strengthen RyR2 as an antiarrhythmic drug target and highlight the potential of investigating the mirror-image isomers of natural products to discover new therapeutics. SIGNIFICANCE STATEMENT: The cardiac ryanodine receptor (RyR2) is an untapped target in the stagnant field of antiarrhythmic drug development. We have confirmed RyR2 as an antiarrhythmic target in a mouse model of sudden cardiac death and shown the therapeutic efficacy of a second enantiomeric natural product.


Asunto(s)
Productos Biológicos , Depsipéptidos , Ratones , Animales , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Depsipéptidos/metabolismo , Depsipéptidos/uso terapéutico , Muerte Súbita Cardíaca/etiología , Miocitos Cardíacos/metabolismo , Calcio/metabolismo
4.
Circulation ; 147(10): 824-840, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36524479

RESUMEN

BACKGROUND: Brugada syndrome (BrS) is an inherited arrhythmia syndrome caused by loss-of-function variants in the cardiac sodium channel gene SCN5A (sodium voltage-gated channel alpha subunit 5) in ≈20% of subjects. We identified a family with 4 individuals diagnosed with BrS harboring the rare G145R missense variant in the cardiac transcription factor TBX5 (T-box transcription factor 5) and no SCN5A variant. METHODS: We generated induced pluripotent stem cells (iPSCs) from 2 members of a family carrying TBX5-G145R and diagnosed with Brugada syndrome. After differentiation to iPSC-derived cardiomyocytes (iPSC-CMs), electrophysiologic characteristics were assessed by voltage- and current-clamp experiments (n=9 to 21 cells per group) and transcriptional differences by RNA sequencing (n=3 samples per group), and compared with iPSC-CMs in which G145R was corrected by CRISPR/Cas9 approaches. The role of platelet-derived growth factor (PDGF)/phosphoinositide 3-kinase (PI3K) pathway was elucidated by small molecule perturbation. The rate-corrected QT (QTc) interval association with serum PDGF was tested in the Framingham Heart Study cohort (n=1893 individuals). RESULTS: TBX5-G145R reduced transcriptional activity and caused multiple electrophysiologic abnormalities, including decreased peak and enhanced "late" cardiac sodium current (INa), which were entirely corrected by editing G145R to wild-type. Transcriptional profiling and functional assays in genome-unedited and -edited iPSC-CMs showed direct SCN5A down-regulation caused decreased peak INa, and that reduced PDGF receptor (PDGFRA [platelet-derived growth factor receptor α]) expression and blunted signal transduction to PI3K was implicated in enhanced late INa. Tbx5 regulation of the PDGF axis increased arrhythmia risk due to disruption of PDGF signaling and was conserved in murine model systems. PDGF receptor blockade markedly prolonged normal iPSC-CM action potentials and plasma levels of PDGF in the Framingham Heart Study were inversely correlated with the QTc interval (P<0.001). CONCLUSIONS: These results not only establish decreased SCN5A transcription by the TBX5 variant as a cause of BrS, but also reveal a new general transcriptional mechanism of arrhythmogenesis of enhanced late sodium current caused by reduced PDGF receptor-mediated PI3K signaling.


Asunto(s)
Síndrome de Brugada , Humanos , Ratones , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Fenotipo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Sodio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
5.
Circ Res ; 130(12): 1926-1964, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679367

RESUMEN

Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide, accounting for 10% to 15% of all deaths. Although most arrhythmias are due to acquired heart disease, inherited channelopathies and cardiomyopathies disproportionately affect children and young adults. Arrhythmogenesis is complex, involving anatomic structure, ion channels and regulatory proteins, and the interplay between cells in the conduction system, cardiomyocytes, fibroblasts, and the immune system. Animal models of arrhythmia are powerful tools for studying not only molecular and cellular mechanism of arrhythmogenesis but also more complex mechanisms at the whole heart level, and for testing therapeutic interventions. This review summarizes basic and clinical arrhythmia mechanisms followed by an in-depth review of published animal models of genetic and acquired arrhythmia disorders.


Asunto(s)
Arritmias Cardíacas , Canalopatías , Animales , Arritmias Cardíacas/metabolismo , Canalopatías/genética , Sistema de Conducción Cardíaco/metabolismo , Modelos Animales , Miocitos Cardíacos/metabolismo
6.
J Mol Cell Cardiol ; 181: 67-78, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37285929

RESUMEN

Diastolic Ca2+ leak due to cardiac ryanodine receptor (RyR2) hyperactivity has been widely documented in chronic ischemic heart disease (CIHD) and may contribute to ventricular tachycardia (VT) risk and progressive left-ventricular (LV) remodeling. Here we test the hypothesis that targeting RyR2 hyperactivity can suppress VT inducibility and progressive heart failure in CIHD by the RyR2 inhibitor dantrolene. METHODS AND RESULTS: CIHD was induced in C57BL/6 J mice by left coronary artery ligation. Four weeks later, mice were randomized to either acute or chronic (6 weeks via implanted osmotic pump) treatment with dantrolene or vehicle. VT inducibility was assessed by programmed stimulation in vivo and in isolated hearts. Electrical substrate remodeling was assessed by optical mapping. Ca2+ sparks and spontaneous Ca2+ releases were measured in isolated cardiomyocytes. Cardiac remodeling was quantified by histology and qRT-PCR. Cardiac function and contractility were measured using echocardiography. Compared to vehicle, acute dantrolene treatment reduced VT inducibility. Optical mapping demonstrated reentrant VT prevention by dantrolene, which normalized the shortened refractory period (VERP) and prolonged action potential duration (APD), preventing APD alternans. In single CIHD cardiomyocytes, dantrolene normalized RyR2 hyperactivity and prevented spontaneous intracellular Ca2+ release. Chronic dantrolene treatment not only reduced VT inducibility but also reduced peri-infarct fibrosis and prevented further progression of LV dysfunction in CIHD mice. CONCLUSIONS: RyR2 hyperactivity plays a mechanistic role for VT risk, post-infarct remodeling, and contractile dysfunction in CIHD mice. Our data provide proof of concept for the anti-arrhythmic and anti-remodeling efficacy of dantrolene in CIHD.


Asunto(s)
Isquemia Miocárdica , Taquicardia Ventricular , Animales , Ratones , Antiarrítmicos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología , Arritmias Cardíacas/patología , Calcio/metabolismo , Dantroleno/farmacología , Ratones Endogámicos C57BL , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Rianodina , Canal Liberador de Calcio Receptor de Rianodina , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/etiología
7.
J Mol Cell Cardiol ; 180: 1-9, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37080450

RESUMEN

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major cause of stroke and morbidity. The strongest genetic risk factors for AF in humans are variants on chromosome 4q25, near the paired-like homeobox transcription factor 2 gene PITX2. Although mice deficient in Pitx2 (Pitx2+/-) have increased AF susceptibility, the mechanism remains controversial. Recent evidence has implicated hyperactivation of the cardiac ryanodine receptor (RyR2) in Pitx2 deficiency, which may be associated with AF susceptibility. We investigated pacing-induced AF susceptibility and spontaneous Ca2+ release events in Pitx2 haploinsufficient (+/-) mice and isolated atrial myocytes to test the hypothesis that hyperactivity of RyR2 increases susceptibility to AF, which can be prevented by a potent and selective RyR2 channel inhibitor, ent-verticilide. Compared with littermate wild-type Pitx2+/+, the frequency of Ca2+ sparks and spontaneous Ca2+ release events increased in permeabilized and intact atrial myocytes from Pitx2+/- mice. Atrial burst pacing consistently increased the incidence and duration of AF in Pitx2+/- mice. The RyR2 inhibitor ent-verticilide significantly reduced the frequency of spontaneous Ca2+ release in intact atrial myocytes and attenuated AF susceptibility with reduced AF incidence and duration. Our data demonstrate that RyR2 hyperactivity enhances SR Ca2+ leak and AF inducibility in Pitx2+/- mice via abnormal Ca2+ handling. Therapeutic targeting of hyperactive RyR2 in AF using ent-verticilide may be a viable mechanism-based approach to treat atrial arrhythmias caused by Pitx2 deficiency.


Asunto(s)
Fibrilación Atrial , Depsipéptidos , Canal Liberador de Calcio Receptor de Rianodina , Animales , Humanos , Ratones , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
8.
Circulation ; 145(19): 1480-1496, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35491884

RESUMEN

BACKGROUND: Exercise training, and catecholaminergic stimulation, increase the incidence of arrhythmic events in patients affected with arrhythmogenic right ventricular cardiomyopathy correlated with plakophilin-2 (PKP2) mutations. Separate data show that reduced abundance of PKP2 leads to dysregulation of intracellular Ca2+ (Ca2+i) homeostasis. Here, we study the relation between excercise, catecholaminergic stimulation, Ca2+i homeostasis, and arrhythmogenesis in PKP2-deficient murine hearts. METHODS: Experiments were performed in myocytes from a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout murine line (PKP2cKO). For training, mice underwent 75 minutes of treadmill running once per day, 5 days each week for 6 weeks. We used multiple approaches including imaging, high-resolution mass spectrometry, electrocardiography, and pharmacological challenges to study the functional properties of cells/hearts in vitro and in vivo. RESULTS: In myocytes from PKP2cKO animals, training increased sarcoplasmic reticulum Ca2+ load, increased the frequency and amplitude of spontaneous ryanodine receptor (ryanodine receptor 2)-mediated Ca2+ release events (sparks), and changed the time course of sarcomeric shortening. Phosphoproteomics analysis revealed that training led to hyperphosphorylation of phospholamban in residues 16 and 17, suggesting a catecholaminergic component. Isoproterenol-induced increase in Ca2+i transient amplitude showed a differential response to ß-adrenergic blockade that depended on the purported ability of the blockers to reach intracellular receptors. Additional experiments showed significant reduction of isoproterenol-induced Ca2+i sparks and ventricular arrhythmias in PKP2cKO hearts exposed to an experimental blocker of ryanodine receptor 2 channels. CONCLUSIONS: Exercise disproportionately affects Ca2+i homeostasis in PKP2-deficient hearts in a manner facilitated by stimulation of intracellular ß-adrenergic receptors and hyperphosphorylation of phospholamban. These cellular changes create a proarrhythmogenic state that can be mitigated by ryanodine receptor 2 blockade. Our data unveil an arrhythmogenic mechanism for exercise-induced or catecholaminergic life-threatening arrhythmias in the setting of PKP2 deficit. We suggest that membrane-permeable ß-blockers are potentially more efficient for patients with arrhythmogenic right ventricular cardiomyopathy, highlight the potential for ryanodine receptor 2 channel blockers as treatment for the control of heart rhythm in the population at risk, and propose that PKP2-dependent and phospholamban-dependent arrhythmogenic right ventricular cardiomyopathy-related arrhythmias have a common mechanism.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Placofilinas , Retículo Sarcoplasmático , Animales , Arritmias Cardíacas , Displasia Ventricular Derecha Arritmogénica/genética , Calcio/metabolismo , Señalización del Calcio , Humanos , Isoproterenol/farmacología , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Condicionamiento Físico Animal/efectos adversos , Placofilinas/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 325(4): H720-H728, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37566110

RESUMEN

Ryanodine receptor 2 (RyR2) hyperactivity is observed in structural heart diseases that are a result of ischemia or heart failure. It causes abnormal calcium handling and calcium leaks that cause metabolic, electrical, and mechanical dysfunction, which can trigger arrhythmias. Here, we tested the antiarrhythmic potential of dantrolene (RyR inhibitor) in human hearts. Human hearts not used in transplantation were obtained, and right ventricular outflow tract (RVOT) wedges and left ventricular (LV) slices were prepared. Pseudo-ECGs were recorded to determine premature ventricular contraction (PVC) incidences. Optical mapping was performed to determine arrhythmogenic substrates. After baseline optical recordings, tissues were treated with 1) isoproterenol (250 nM), 2) caffeine (200 mM), and 3) dantrolene (2 or 10 mM). Optical recordings were obtained after each treatment. Isoproterenol and caffeine treatment increased PVC incidence, whereas dantrolene reduced the PVC burden. Isoproterenol shortened action potential duration (APD) in the RV, RVOT, and LV regions and shortened calcium transient duration (CaTD) in the LV. Caffeine further shortened APD in the RV, did not modulate APD in the RVOT, and prolonged APD in the LV. In addition, in the LV, CaTD prolongation was also observed. More importantly, adding dantrolene did not alter APD in the RV or RVOT regions but produced a trend toward APD prolongation and significant CaTD prolongation in the LV, restoring these parameters to baseline values. In conclusions, dantrolene treatment suppresses triggers and reverses arrhythmogenic substrates in the human heart and could be a novel antiarrhythmic therapy in patients with structural heart disease.NEW & NOTEWORTHY Ryanodine receptor 2 hyperactivity is observed in structural heart diseases caused by ischemia or heart failure. It causes abnormal calcium leaks, which can trigger arrhythmias. To prevent arrhythmias, we applied dantrolene in human hearts ex vivo. Isoproterenol and caffeine treatment increased PVC incidence, whereas dantrolene reduced the PVC burden. Dantrolene treatment suppresses triggers and reverses arrhythmogenic substrates and could be a novel antiarrhythmic therapy in patients with structural heart disease.


Asunto(s)
Insuficiencia Cardíaca , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Dantroleno/farmacología , Isoproterenol/farmacología , Rianodina/farmacología , Calcio/metabolismo , Cafeína/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Antiarrítmicos/farmacología , Potenciales de Acción
10.
J Pharmacol Exp Ther ; 385(3): 205-213, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36894328

RESUMEN

The unnatural verticilide enantiomer (ent-verticilide) is a selective and potent inhibitor of cardiac ryanodine receptor (RyR2) calcium release channels and exhibits antiarrhythmic activity in a murine model of catecholaminergic polymorphic ventricular tachycardia (CPVT). To determine verticilide's pharmacokinetic and pharmacodynamic properties in vivo, we developed a bioassay to measure nat- and ent-verticilide in murine plasma and correlated plasma concentrations with antiarrhythmic efficacy in a mouse model of CPVT. nat-Verticilide rapidly degraded in plasma in vitro, showing >95% degradation within 5 minutes, whereas ent-verticilide showed <1% degradation over 6 hours. Plasma was collected from mice following intraperitoneal administration of ent-verticilide at two doses (3 mg/kg, 30 mg/kg). Peak C max and area under the plasma-concentration time curve (AUC) scaled proportionally to dose, and the half-life was 6.9 hours for the 3-mg/kg dose and 6.4 hours for the 30-mg/kg dose. Antiarrhythmic efficacy was examined using a catecholamine challenge protocol at time points ranging from 5 to 1440 minutes after intraperitoneal dosing. ent-Verticilide inhibited ventricular arrhythmias as early as 7 minutes after administration in a concentration-dependent manner, with an estimated potency (IC50) of 266 ng/ml (312 nM) and an estimated maximum inhibitory effect of 93.5%. Unlike the US Food and Drug Administration-approved pan-RyR blocker dantrolene, the RyR2-selective blocker ent-verticilide (30 mg/kg) did not reduce skeletal muscle strength in vivo. We conclude that ent-verticilide has favorable pharmacokinetic properties and reduces ventricular arrhythmias with an estimated potency in the nanomolar range, warranting further drug development. SIGNIFICANCE STATEMENT: ent-Verticilide has therapeutic potential to treat cardiac arrhythmias, but little is known about its pharmacological profile in vivo. The primary purpose of this study is to determine the systemic exposure and pharmacokinetics of ent-verticilide in mice and estimate its efficacy and potency in vivo. The current work suggests ent-verticilide has favorable pharmacokinetic properties and reduces ventricular arrhythmias with an estimated potency in the nanomolar range, warranting further drug development.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Taquicardia Ventricular , Ratones , Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/metabolismo , Miocitos Cardíacos/metabolismo
11.
Circ Res ; 128(3): 321-331, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33297863

RESUMEN

RATIONALE: The class Ic antiarrhythmic drug flecainide prevents ventricular tachyarrhythmia in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease caused by hyperactive RyR2 (cardiac ryanodine receptor) mediated calcium (Ca) release. Although flecainide inhibits single RyR2 channels in vitro, reports have claimed that RyR2 inhibition by flecainide is not relevant for its mechanism of antiarrhythmic action and concluded that sodium channel block alone is responsible for flecainide's efficacy in CPVT. OBJECTIVE: To determine whether RyR2 block independently contributes to flecainide's efficacy for suppressing spontaneous sarcoplasmic reticulum Ca release and for preventing ventricular tachycardia in vivo. METHODS AND RESULTS: We synthesized N-methylated flecainide analogues (QX-flecainide and N-methyl flecainide) and showed that N-methylation reduces flecainide's inhibitory potency on RyR2 channels incorporated into artificial lipid bilayers. N-methylation did not alter flecainide's inhibitory activity on human cardiac sodium channels expressed in HEK293T cells. Antiarrhythmic efficacy was tested utilizing a Casq2 (cardiac calsequestrin) knockout (Casq2-/-) CPVT mouse model. In membrane-permeabilized Casq2-/- cardiomyocytes-lacking intact sarcolemma and devoid of sodium channel contribution-flecainide, but not its analogues, suppressed RyR2-mediated Ca release at clinically relevant concentrations. In voltage-clamped, intact Casq2-/- cardiomyocytes pretreated with tetrodotoxin to inhibit sodium channels and isolate the effect of flecainide on RyR2, flecainide significantly reduced the frequency of spontaneous sarcoplasmic reticulum Ca release, while QX-flecainide and N-methyl flecainide did not. In vivo, flecainide effectively suppressed catecholamine-induced ventricular tachyarrhythmias in Casq2-/- mice, whereas N-methyl flecainide had no significant effect on arrhythmia burden, despite comparable sodium channel block. CONCLUSIONS: Flecainide remains an effective inhibitor of RyR2-mediated arrhythmogenic Ca release even when cardiac sodium channels are blocked. In mice with CPVT, sodium channel block alone did not prevent ventricular tachycardia. Hence, RyR2 channel inhibition likely constitutes the principal mechanism of antiarrhythmic action of flecainide in CPVT.


Asunto(s)
Antiarrítmicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Flecainida/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Retículo Sarcoplasmático/efectos de los fármacos , Taquicardia Ventricular/prevención & control , Potenciales de Acción , Animales , Señalización del Calcio , Calsecuestrina/genética , Calsecuestrina/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Masculino , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Oveja Doméstica , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
12.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834023

RESUMEN

The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.


Asunto(s)
Actinina , Miofibrillas , Humanos , Actinina/genética , Actinina/metabolismo , Conectina/genética , Conectina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Sarcómeros/metabolismo
13.
Mol Pharmacol ; 101(4): 236-245, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35125346

RESUMEN

Loss-of-function (LOF) variants in the KV11.1 potassium channel cause long QT syndrome (LQTS). Most variants disrupt intracellular channel transport (trafficking) to the cell membrane. Since some channel inhibitors improve trafficking of KV11.1 variants, a high-throughput screening (HTS) assay to detect trafficking enhancement would be valuable to the identification of drug candidates. The thallium (Tl+) flux assay technique, widely used for drug screening, was optimized using human embryonic kidney (HEK-293) cells expressing a trafficking-deficient KV11.1 variant in 384-well plates. Assay quality was assessed using Z prime (Z') scores comparing vehicle to E-4031, a drug that increases KV11.1 membrane trafficking. The optimized assay was validated by immunoblot, electrophysiology experiments, and a pilot drug screen. The combination of: 1) truncating the trafficking-deficient variant KV11.1-G601S (KV11.1-G601S-G965*X) with the addition of 2) KV11.1 channel activator (VU0405601) and 3) cesium (Cs+) to the Tl+ flux assay buffer resulted in an outstanding Z' of 0.83. To validate the optimized trafficking assay, we carried out a pilot screen that identified three drugs (ibutilide, azaperone, and azelastine) that increase KV11.1 trafficking. The new assay exhibited 100% sensitivity and specificity. Immunoblot and voltage-clamp experiments confirmed that all three drugs identified by the new assay improved membrane trafficking of two additional LQTS KV11.1 variants. We report two new ways to increase target-specific activity in trafficking assays-genetic modification and channel activation-that yielded a novel HTS assay for identifying drugs that improve membrane expression of pathogenic KV11.1 variants. SIGNIFICANCE STATEMENT: This manuscript reports the development of a high-throughput assay (thallium flux) to identify drugs that can increase function in KV11.1 variants that are trafficking-deficient. Two key aspects that improved the resolving power of the assay and could be transferable to other ion channel trafficking-related assays include genetic modification and channel activation.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Síndrome de QT Prolongado , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Humanos , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Talio/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 323(6): H1137-H1166, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36269644

RESUMEN

Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Animales , Humanos , Técnicas Electrofisiológicas Cardíacas , Arritmias Cardíacas/etiología , Miocitos Cardíacos
15.
Proc Natl Acad Sci U S A ; 116(11): 4810-4815, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30792355

RESUMEN

Ca2+ leak via ryanodine receptor type 2 (RyR2) can cause potentially fatal arrhythmias in a variety of heart diseases and has also been implicated in neurodegenerative and seizure disorders, making RyR2 an attractive therapeutic target for drug development. Here we synthesized and investigated the fungal natural product and known insect RyR antagonist (-)-verticilide and several congeners to determine their activity against mammalian RyR2. Although the cyclooligomeric depsipeptide natural product (-)-verticilide had no effect, its nonnatural enantiomer [ent-(+)-verticilide] significantly reduced RyR2-mediated spontaneous Ca2+ leak both in cardiomyocytes from wild-type mouse and from a gene-targeted mouse model of Ca2+ leak-induced arrhythmias (Casq2-/-). ent-(+)-verticilide selectively inhibited RyR2-mediated Ca2+ leak and exhibited higher potency and a distinct mechanism of action compared with the pan-RyR inhibitors dantrolene and tetracaine and the antiarrhythmic drug flecainide. ent-(+)-verticilide prevented arrhythmogenic membrane depolarizations in cardiomyocytes without significant effects on the cardiac action potential and attenuated ventricular arrhythmia in catecholamine-challenged Casq2-/- mice. These findings indicate that ent-(+)-verticilide is a potent and selective inhibitor of RyR2-mediated diastolic Ca2+ leak, making it a molecular tool to investigate the therapeutic potential of targeting RyR2 hyperactivity in heart and brain pathologies. The enantiomer-specific activity and straightforward chemical synthesis of (unnatural) ent-(+)-verticilide provides a compelling argument to prioritize ent-natural product synthesis. Despite their general absence in nature, the enantiomers of natural products may harbor unprecedented activity, thereby leading to new scaffolds for probe and therapeutic development.


Asunto(s)
Antiarrítmicos/química , Antiarrítmicos/farmacología , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Calcio/metabolismo , Depsipéptidos/química , Depsipéptidos/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/fisiopatología , Bloqueadores de los Canales de Calcio/uso terapéutico , Depsipéptidos/uso terapéutico , Dimerización , Potenciales de la Membrana/efectos de los fármacos , Ratones , Rianodina/metabolismo , Estereoisomerismo
16.
J Mol Cell Cardiol ; 161: 130-138, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34400182

RESUMEN

BACKGROUND: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising tool for disease modeling and drug development. However, hiPSC-CMs remain functionally immature, which hinders their utility as a model of human cardiomyocytes. OBJECTIVE: To improve the electrophysiological maturation of hiPSC-CMs. METHODS AND RESULTS: On day 16 of cardiac differentiation, hiPSC-CMs were treated with 100 nmol/L triiodothyronine (T3) and 1 µmol/L Dexamethasone (Dex) or vehicle for 14 days. On day 30, vehicle- and T3 + Dex-treated hiPSC-CMs were dissociated and replated either as cell sheets or single cells. Optical mapping and patch-clamp technique were used to examine the electrophysiological properties of vehicle- and T3 + Dex-treated hiPSC-CMs. Compared to vehicle, T3 + Dex-treated hiPSC-CMs had a slower spontaneous beating rate, more hyperpolarized resting membrane potential, faster maximal upstroke velocity, and shorter action potential duration. Changes in spontaneous activity and action potential were mediated by decreased hyperpolarization-activated current (If) and increased inward rectifier potassium currents (IK1), sodium currents (INa), and the rapidly and slowly activating delayed rectifier potassium currents (IKr and IKs, respectively). Furthermore, T3 + Dex-treated hiPSC-CM cell sheets (hiPSC-CCSs) exhibited a faster conduction velocity and shorter action potential duration than the vehicle. Inhibition of IK1 by 100 µM BaCl2 significantly slowed conduction velocity and prolonged action potential duration in T3 + Dex-treated hiPSC-CCSs but had no effect in the vehicle group, demonstrating the importance of IK1 for conduction velocity and action potential duration. CONCLUSION: T3 + Dex treatment is an effective approach to rapidly enhance electrophysiological maturation of hiPSC-CMs.


Asunto(s)
Dexametasona/farmacología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/fisiología , Canales de Potasio/genética , Triyodotironina/farmacología , Potenciales de Acción/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Miocitos Cardíacos/efectos de los fármacos , Canales de Potasio/metabolismo , Análisis de la Célula Individual
17.
Circ Res ; 125(6): 653-658, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31465267

RESUMEN

Long-QT syndrome, a frequently fatal inherited arrhythmia syndrome caused by genetic variants (congenital) or drugs (acquired), affects 1 in 2000 people worldwide. Its sentinel event is often sudden cardiac death, which makes preclinical diagnosis by genetic testing potentially life-saving. Unfortunately, clinical experience with genetic testing has shown that it is difficult to correctly identify genetic variants as disease causing. These current deficiencies in accurately assigning pathogenicity led to the discovery of increasing numbers of rare variants classified as variant of uncertain significance. To overcome these challenges, new technologies such as clustered regularly interspaced short palindromic repeats (CRISPR) genome editing can be combined with human induced pluripotent stem cell-derived cardiomyocytes to provide a new approach to decipher pathogenicity of variants of uncertain significance and to better predict arrhythmia risk. To that end, the overarching goal of our network is to establish the utility of induced pluripotent stem cell-based platforms to solve major clinical problems associated with long-QT syndrome by determining how to (1) differentiate pathogenic mutations from background genetic noise, (2) assess existing and novel variants associated with congenital and acquired long-QT syndrome, and (3) provide genotype- and phenotype- guided risk stratification and pharmacological management of long-QT syndrome. To achieve these goals and to further advance the use of induced pluripotent stem cells in disease modeling and drug discovery, our team of investigators for this Leducq Foundation Transatlantic Networks of Excellence proposal will work together to (1) improve differentiation efficiency, cellular maturation, and lineage specificity, (2) develop new assays for high throughput cellular phenotyping, and (3) train young investigators to clinically implement patient-specific genetic modeling.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células Madre Pluripotentes Inducidas/trasplante , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/terapia , Medicina de Precisión/métodos , Canalopatías/diagnóstico , Canalopatías/genética , Canalopatías/terapia , Humanos , Síndrome de QT Prolongado/diagnóstico , Medicina de Precisión/tendencias
18.
Am J Physiol Cell Physiol ; 318(1): C163-C173, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747312

RESUMEN

Fluorescence recovery after photobleaching (FRAP) has been useful in delineating cardiac myofilament biology, and innovations in fluorophore chemistry have expanded the array of microscopic assays used. However, one assumption in FRAP is the irreversible photobleaching of fluorescent proteins after laser excitation. Here we demonstrate reversible photobleaching regarding the photoconvertible fluorescent protein mEos3.2. We used CRISPR/Cas9 genome editing in human induced pluripotent stem cells (hiPSCs) to knock-in mEos3.2 into the COOH terminus of titin to visualize sarcomeric titin incorporation and turnover. Upon cardiac induction, the titin-mEos3.2 fusion protein is expressed and integrated in the sarcomeres of hiPSC-derived cardiomyocytes (CMs). STORM imaging shows M-band clustered regions of bound titin-mEos3.2 with few soluble titin-mEos3.2 molecules. FRAP revealed a baseline titin-mEos3.2 fluorescence recovery of 68% and half-life of ~1.2 h, suggesting a rapid exchange of sarcomeric titin with soluble titin. However, paraformaldehyde-fixed and permeabilized titin-mEos3.2 hiPSC-CMs surprisingly revealed a 55% fluorescence recovery. Whole cell FRAP analysis in paraformaldehyde-fixed, cycloheximide-treated, and untreated titin-mEos3.2 hiPSC-CMs displayed no significant differences in fluorescence recovery. FRAP in fixed HEK 293T expressing cytosolic mEos3.2 demonstrates a 58% fluorescence recovery. These data suggest that titin-mEos3.2 is subject to reversible photobleaching following FRAP. Using a mouse titin-eGFP model, we demonstrate that no reversible photobleaching occurs. Our results reveal that reversible photobleaching accounts for the majority of titin recovery in the titin-mEos3.2 hiPSC-CM model and should warrant as a caution in the extrapolation of reliable FRAP data from specific fluorescent proteins in long-term cell imaging.


Asunto(s)
Diferenciación Celular , Conectina/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Células Madre Pluripotentes Inducidas/metabolismo , Microscopía Fluorescente , Microscopía por Video , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Adulto , Línea Celular , Conectina/genética , Humanos , Cinética , Proteínas Luminiscentes/metabolismo , Masculino , Proteínas Recombinantes de Fusión/metabolismo , Reproducibilidad de los Resultados , Sarcómeros/genética
19.
Circulation ; 140(22): 1820-1833, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31581792

RESUMEN

BACKGROUND: Cardiac kinases play a critical role in the development of heart failure, and represent potential tractable therapeutic targets. However, only a very small fraction of the cardiac kinome has been investigated. To identify novel cardiac kinases involved in heart failure, we used an integrated transcriptomics and bioinformatics analysis and identified Homeodomain-Interacting Protein Kinase 2 (HIPK2) as a novel candidate kinase. The role of HIPK2 in cardiac biology is unknown. METHODS: We used the Expression2Kinase algorithm for the screening of kinase targets. To determine the role of HIPK2 in the heart, we generated cardiomyocyte (CM)-specific HIPK2 knockout and heterozygous mice. Heart function was examined by echocardiography, and related cellular and molecular mechanisms were examined. Adeno-associated virus serotype 9 carrying cardiac-specific constitutively active MEK1 (TnT-MEK1-CA) was administrated to rescue cardiac dysfunction in CM-HIPK2 knockout mice. RESULTS: To our knowledge, this is the first study to define the role of HIPK2 in cardiac biology. Using multiple HIPK2 loss-of-function mouse models, we demonstrated that reduction of HIPK2 in CMs leads to cardiac dysfunction, suggesting a causal role in heart failure. It is important to note that cardiac dysfunction in HIPK2 knockout mice developed with advancing age, but not during development. In addition, CM-HIPK2 knockout mice and CM-HIPK2 heterozygous mice exhibited a gene dose-response relationship of CM-HIPK2 on heart function. HIPK2 expression in the heart was significantly reduced in human end-stage ischemic cardiomyopathy in comparison to nonfailing myocardium, suggesting a clinical relevance of HIPK2 in cardiac biology. In vitro studies with neonatal rat ventricular CMscorroborated the in vivo findings. Specifically, adenovirus-mediated overexpression of HIPK2 suppressed the expression of heart failure markers, NPPA and NPPB, at basal condition and abolished phenylephrine-induced pathological gene expression. An array of mechanistic studies revealed impaired extracellular signal-regulated kinase 1/2 signaling in HIPK2-deficient hearts. An in vivo rescue experiment with adeno-associated virus serotype 9 TnT-MEK1-CA nearly abolished the detrimental phenotype of knockout mice, suggesting that impaired extracellular signal-regulated kinase signaling mediated apoptosis as the key factor driving the detrimental phenotype in CM-HIPK2 knockout mice hearts. CONCLUSIONS: Taken together, these findings suggest that CM-HIPK2 is required to maintain normal cardiac function via extracellular signal-regulated kinase signaling.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/enzimología , Sistema de Señalización de MAP Quinasas , Miocardio/enzimología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Biomarcadores/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Ratones , Ratones Noqueados , Miocardio/patología , Proteínas Serina-Treonina Quinasas/genética
20.
Circulation ; 140(13): 1070-1080, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31378084

RESUMEN

BACKGROUND: Male hypogonadism, arising from a range of etiologies including androgen-deprivation therapies (ADTs), has been reported as a risk factor for acquired long-QT syndrome (aLQTS) and torsades de pointes (TdP). A full description of the clinical features of aLQTS associated with ADT and of underlying mechanisms is lacking. METHODS: We searched the international pharmacovigilance database VigiBase for men (n=6 560 565 individual case safety reports) presenting with aLQTS, TdP, or sudden death associated with ADT. In cardiomyocytes derived from induced pluripotent stem cells from men, we studied electrophysiological effects of ADT and dihydrotestosterone. RESULTS: Among subjects receiving ADT in VigiBase, we identified 184 cases of aLQTS (n=168) and/or TdP (n=68; 11% fatal), and 99 with sudden death. Of the 10 ADT drugs examined, 7 had a disproportional association (reporting odds ratio=1.4-4.7; P<0.05) with aLQTS, TdP, or sudden death. The minimum and median times to sudden death were 0.25 and 92 days, respectively. The androgen receptor antagonist enzalutamide was associated with more deaths (5430/31 896 [17%]; P<0.0001) than other ADT used for prostate cancer (4208/52 089 [8.1%]). In induced pluripotent stem cells, acute and chronic enzalutamide (25 µM) significantly prolonged action potential durations (action potential duration at 90% when paced at 0.5 Hz; 429.7±27.1 (control) versus 982.4±33.2 (acute, P<0.001) and 1062.3±28.9 ms (chronic; P<0.001), and generated afterdepolarizations and/or triggered activity in drug-treated cells (11/20 acutely and 8/15 chronically). Enzalutamide acutely and chronically inhibited delayed rectifier potassium current, and chronically enhanced late sodium current. Dihydrotestosterone (30 nM) reversed enzalutamide electrophysiological effects on induced pluripotent stem cells. CONCLUSIONS: QT prolongation and TdP are a risk in men receiving enzalutamide and other ADTs. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT03193138.


Asunto(s)
Andrógenos/metabolismo , Antineoplásicos/efectos adversos , Hipogonadismo/epidemiología , Células Madre Pluripotentes Inducidas/fisiología , Síndrome de QT Prolongado/epidemiología , Miocitos Cardíacos/fisiología , Feniltiohidantoína/análogos & derivados , Torsades de Pointes/epidemiología , Antineoplásicos/uso terapéutico , Benzamidas , Diferenciación Celular , Células Cultivadas , Bases de Datos Factuales , Humanos , Hipogonadismo/tratamiento farmacológico , Cooperación Internacional , Síndrome de QT Prolongado/tratamiento farmacológico , Masculino , Nitrilos , Farmacovigilancia , Feniltiohidantoína/efectos adversos , Feniltiohidantoína/uso terapéutico , Riesgo , Torsades de Pointes/tratamiento farmacológico , Investigación Biomédica Traslacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA