Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Physiol ; 602(5): 891-912, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429930

RESUMEN

Skeletal muscle cellular development requires the integrated assembly of mitochondria and other organelles adjacent to the sarcomere in support of muscle contractile performance. However, it remains unclear how interactions among organelles and with the sarcomere relates to the development of muscle cell function. Here, we combine 3D volume electron microscopy, proteomic analyses, and live cell functional imaging to investigate the postnatal reorganization of mitochondria-organelle interactions in skeletal muscle. We show that while mitochondrial networks are disorganized and loosely associated with the contractile apparatus at birth, contact sites among mitochondria, lipid droplets and the sarcoplasmic reticulum are highly abundant in neonatal muscles. The maturation process is characterized by a transition to highly organized mitochondrial networks wrapped tightly around the muscle sarcomere but also to less frequent interactions with both lipid droplets and the sarcoplasmic reticulum. Concomitantly, expression of proteins involved in mitochondria-organelle membrane contact sites decreases during postnatal development in tandem with a decrease in abundance of proteins associated with sarcomere assembly despite an overall increase in contractile protein abundance. Functionally, parallel measures of mitochondrial membrane potential, NADH redox status, and NADH flux within intact cells revealed that mitochondria in adult skeletal muscle fibres maintain a more activated electron transport chain compared with neonatal muscle mitochondria. These data demonstrate a developmental redesign reflecting a shift from muscle cell assembly and frequent inter-organelle communication toward a muscle fibre with mitochondrial structure, interactions, composition and function specialized to support contractile function. KEY POINTS: Mitochondrial network organization is remodelled during skeletal muscle postnatal development. The mitochondrial outer membrane is in frequent contact with other organelles at birth and transitions to more close associations with the contractile apparatus in mature muscles. Mitochondrial energy metabolism becomes more activated during postnatal development. Understanding the developmental redesign process within skeletal muscle cells may help pinpoint specific areas of deficit in muscles with developmental disorders.


Asunto(s)
NAD , Proteómica , Humanos , Adulto , Recién Nacido , NAD/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias Musculares/metabolismo , Gotas Lipídicas/metabolismo
2.
J Physiol ; 602(9): 1967-1986, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564214

RESUMEN

Mitochondria within skeletal muscle cells are located either between the muscle contractile apparatus (interfibrillar mitochondria, IFM) or beneath the cell membrane (subsarcolemmal mitochondria, SSM), with several structural and functional differences reported between IFM and SSM. However, recent 3D imaging studies demonstrate that mitochondria are particularly concentrated in the proximity of capillaries embedded in sarcolemmal grooves rather than in proximity to the sarcolemma itself (paravascular mitochondria, PVM). To evaluate the impact of capillary vs. sarcolemmal proximity, we compared the structure and function of skeletal muscle mitochondria located either lateral to embedded capillaries (PVM), adjacent to the sarcolemma but not in PVM pools (SSM) or interspersed between sarcomeres (IFM). Mitochondrial morphology and interactions were assessed by 3D electron microscopy coupled with machine learning segmentation, whereas mitochondrial energy conversion was assessed by two-photon microscopy of mitochondrial membrane potential, content, calcium, NADH redox and flux in live, intact cells. Structurally, although PVM and SSM were similarly larger than IFM, PVM were larger, rounder and had more physical connections to neighbouring mitochondria compared to both IFM and SSM. Functionally, PVM had similar or greater basal NADH flux compared to SSM and IFM, respectively, despite a more oxidized NADH pool and a greater membrane potential, signifying a greater activation of the electron transport chain in PVM. Together, these data indicate that proximity to capillaries has a greater impact on resting mitochondrial energy conversion and distribution in skeletal muscle than the sarcolemma alone. KEY POINTS: Capillaries have a greater impact on mitochondrial energy conversion in skeletal muscle than the sarcolemma. Paravascular mitochondria are larger, and the outer mitochondrial membrane is more connected with neighbouring mitochondria. Interfibrillar mitochondria are longer and have greater contact sites with other organelles (i.e. sarcoplasmic reticulum and lipid droplets). Paravascular mitochondria have greater activation of oxidative phosphorylation than interfibrillar mitochondria at rest, although this is not regulated by calcium.


Asunto(s)
Capilares , Mitocondrias Musculares , Músculo Esquelético , Sarcolema , Sarcolema/metabolismo , Sarcolema/ultraestructura , Sarcolema/fisiología , Animales , Capilares/fisiología , Capilares/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/ultraestructura , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigación sanguínea , Ratones , Metabolismo Energético/fisiología , Masculino , Ratones Endogámicos C57BL , Potencial de la Membrana Mitocondrial/fisiología
3.
J Biol Chem ; 299(3): 103018, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796514

RESUMEN

The endosymbiotic theory posits that ancient eukaryotic cells engulfed O2-consuming prokaryotes, which protected them against O2 toxicity. Previous studies have shown that cells lacking cytochrome c oxidase (COX), required for respiration, have increased DNA damage and reduced proliferation, which could be improved by reducing O2 exposure. With recently developed fluorescence lifetime microscopy-based probes demonstrating that the mitochondrion has lower [O2] than the cytosol, we hypothesized that the perinuclear distribution of mitochondria in cells may create a barrier for O2 to access the nuclear core, potentially affecting cellular physiology and maintaining genomic integrity. To test this hypothesis, we utilized myoglobin-mCherry fluorescence lifetime microscopy O2 sensors without subcellular targeting ("cytosol") or with targeting to the mitochondrion or nucleus for measuring their localized O2 homeostasis. Our results showed that, similar to the mitochondria, the nuclear [O2] was reduced by ∼20 to 40% compared with the cytosol under imposed O2 levels of ∼0.5 to 18.6%. Pharmacologically inhibiting respiration increased nuclear O2 levels, and reconstituting O2 consumption by COX reversed this increase. Similarly, genetic disruption of respiration by deleting SCO2, a gene essential for COX assembly, or restoring COX activity in SCO2-/- cells by transducing with SCO2 cDNA replicated these changes in nuclear O2 levels. The results were further supported by the expression of genes known to be affected by cellular O2 availability. Our study reveals the potential for dynamic regulation of nuclear O2 levels by mitochondrial respiratory activity, which in turn could affect oxidative stress and cellular processes such as neurodegeneration and aging.


Asunto(s)
Mitocondrias , Oxígeno , Oxígeno/metabolismo , Mitocondrias/metabolismo , Respiración , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Núcleo Celular/metabolismo , Consumo de Oxígeno , Respiración de la Célula
4.
RNA ; 27(4): 433-444, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33376189

RESUMEN

To further understand the transcriptome, new tools capable of measuring folding, interactions, and localization of RNA are needed. Although Förster resonance energy transfer (FRET) is an angle- and distance-dependent phenomenon, the majority of FRET measurements have been used to report distances, by assuming rotationally averaged donor-acceptor pairs. Angle-dependent FRET measurements have proven challenging for nucleic acids due to the difficulties in incorporating fluorophores rigidly into local substructures in a biocompatible manner. Fluorescence turn-on RNA aptamers are genetically encodable tags that appear to rigidly confine their cognate fluorophores, and thus have the potential to report angular-resolved FRET. Here, we use the fluorescent aptamers Broccoli and Mango-III as donor and acceptor, respectively, to measure the angular dependence of FRET. Joining the two fluorescent aptamers by a helix of variable length allowed systematic rotation of the acceptor fluorophore relative to the donor. FRET oscillated in a sinusoidal manner as a function of helix length, consistent with simulated data generated from models of oriented fluorophores separated by an inflexible helix. Analysis of the orientation dependence of FRET allowed us to demonstrate structural rigidification of the NiCo riboswitch upon transition metal-ion binding. This application of fluorescence turn-on aptamers opens the way to improved structural interpretation of ensemble and single-molecule FRET measurements of RNA.


Asunto(s)
Aptámeros de Nucleótidos/química , Transferencia Resonante de Energía de Fluorescencia/métodos , ARN/química , Riboswitch , Aptámeros de Nucleótidos/metabolismo , Fluorescencia , Colorantes Fluorescentes/química , Modelos Moleculares , Conformación de Ácido Nucleico , ARN/metabolismo
5.
Phys Chem Chem Phys ; 25(10): 7239-7250, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36853740

RESUMEN

Ultrafast Förster Resonance Energy Transfer (FRET) between tyrosine (Tyr) and tryptophan (Trp) residues in the protein monellin has been investigated using picosecond and femtosecond time-resolved fluorescence spectroscopy. Decay associated spectra (DAS) and time-resolved emission spectra (TRES) taken with the different excitation wavelengths of 275, 290 and 295 nm were constructed via global analysis. At two of those three excitation loci (275 and 290 nm), earmarks of energy transfer from Tyr to Trp in monellin are seen, and particularly when the excitation is 275 nm, the energy transfer between Tyr and Trp clearly changes the signature emission DAS shape to that indicating excited state reaction (especially on the red side of fluorescence emission, near 380 nm). Those FRET signatures may overlap with the conventional signatory DAS in heterogeneous systems. When overlap and addition occur between FRET type DAS and "full positive" QSSQ (quasi-static self-quenching), mixed DAS shapes will emerge that still show "positive blue side and negative red sides", just with zero crossing shifted. In addition, excitation decay associated spectra (EDAS) taken with the different emission wavelengths of 330, 350 and 370 nm were constructed. In the study of protein dynamics, ultrafast FRET between Tyr and Trp could provide a basis for an intrinsic (non-perturbing) "spectroscopic ruler", potentially a powerful tool to detect even slight changes in protein structures.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Tirosina , Triptófano , Espectrometría de Fluorescencia
6.
Phys Chem Chem Phys ; 24(30): 18055-18066, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35861343

RESUMEN

Ultrafast Förster Resonance Energy Transfer (FRET) between Tyrosine (Tyr, Y) and Tryptophan (Trp, W) in the model peptides Trp-(Pro)n-Tyr (WPnY) has been investigated using a femtosecond up-conversion spectrophotofluorometer. The ultrafast energy transfer process (<100 ps) in short peptides (WY, WPY and WP2Y) has been resolved. In fact, this FRET rate is found to be mixed with the rates of solvent relaxation (SR), ultrafast population decay (QSSQ) and other lifetime components. To further dissect and analyze the FRET, a spectral working model is constructed, and the contribution of a FRET lifetime is separated by reconciling the shapes of decay associated spectra (DAS). Surprisingly, FRET efficiency did not decrease monotonically with the growth of the peptide chain (as expected) but increased first and then decreased. The highest FRET efficiency occurred in peptide WPY. The kinetic results have been accompanied with molecular dynamics simulations that reconcile and explain this strange phenomenon: due to the strong interaction between amino acids, the distance between the donor and receptor in peptide WPY is actually closest, resulting in the fastest FRET. In addition, the FRET lifetimes (τcal) were estimated within the molecular dynamics simulations, and they were consistent with the lifetimes (τexp) separated out by the experimental measurements and the DAS working model. This benchmark study has implications for both previous and future studies of protein ultrafast dynamics. The approach taken can be generalized for the study of proximate tyrosine and tryptophan in proteins and it suggests spectral strategies for extracting mixed rates in other complex FRET problems.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Triptófano , Péptidos , Triptófano/química , Tirosina , Agua/química
7.
Chem Phys ; 5532022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35465176

RESUMEN

Thiazole orange (TO), an asymmetric cyanine dye, has been widely used in biomolecular detection and imaging of DNA/ RNA in gels, due to its unique fluorogenic behavior: fluorescence of free dye in aqueous solution is very weak but emission can be significantly enhanced in nucleic-acid-bound dye. Herein we describe the ultrafast excited-state dynamics of free TO in aqueous solution by exploiting both a femtosecond upconversion spectrophotofluorometer and a picosecond time-correlated single-photon counting (TCSPC) apparatus. For the first time, the fluorescence lifetime of TO monomer in water was found to be ∼1 ps, mixed with concurrent solvent relaxation (which was confirmed by the experimental results of TO in DMSO). Even at moderate concentration, this lifetime has an amplitude (a measure of molecular fraction) that significantly dominates other lifetimes, and this is the origin of weak steady state fluorescence of free TO in water. We also found a novel slower decay component around 34 ps. Interestingly and in addition, the lifetime component on the 30-40 ps timescale was also found in TO-γ-Cyclodextrin (CD) complexes. The fraction of this component increased with the addition of γ-CD. Cyclodextrin has been reported to promote the aggregation of TO. Thus, although a very coincidental match of this time constant by one for a torsional process within the cavity can not be ruled out, we ascribe the shared 30-40 ps component to the lifetime of a highly quenched TO dimer experiencing intra-and inter-molecular rearrangement.

8.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293452

RESUMEN

Computational modeling can provide a mechanistic and quantitative framework for describing intracellular spatial heterogeneity of solutes such as oxygen partial pressure (pO2). This study develops and evaluates a finite-element model of oxygen-consuming mitochondrial bioenergetics using the COMSOL Multiphysics program. The model derives steady-state oxygen (O2) distributions from Fickian diffusion and Michaelis-Menten consumption kinetics in the mitochondria and cytoplasm. Intrinsic model parameters such as diffusivity and maximum consumption rate were estimated from previously published values for isolated and intact mitochondria. The model was compared with experimental data collected for the intracellular and mitochondrial pO2 levels in human cervical cancer cells (HeLa) in different respiratory states and under different levels of imposed pO2. Experimental pO2 gradients were measured using lifetime imaging of a Förster resonance energy transfer (FRET)-based O2 sensor, Myoglobin-mCherry, which offers in situ real-time and noninvasive measurements of subcellular pO2 in living cells. On the basis of these results, the model qualitatively predicted (1) the integrated experimental data from mitochondria under diverse experimental conditions, and (2) the impact of changes in one or more mitochondrial processes on overall bioenergetics.


Asunto(s)
Consumo de Oxígeno , Oxígeno , Humanos , Mioglobina/metabolismo , Simulación por Computador , Metabolismo Energético
9.
Nat Chem Biol ; 15(5): 472-479, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30992561

RESUMEN

Several turn-on RNA aptamers that activate small-molecule fluorophores have been selected in vitro. Among these, the ~30 nucleotide Mango-III is notable because it binds the thiazole orange derivative TO1-Biotin with high affinity and fluoresces brightly (quantum yield 0.55). Uniquely among related aptamers, Mango-III exhibits biphasic thermal melting, characteristic of molecules with tertiary structure. We report crystal structures of TO1-Biotin complexes of Mango-III, a structure-guided mutant Mango-III(A10U), and a functionally reselected mutant iMango-III. The structures reveal a globular architecture arising from an unprecedented pseudoknot-like connectivity between a G-quadruplex and an embedded non-canonical duplex. The fluorophore is restrained into a planar conformation by the G-quadruplex, a lone, long-range trans Watson-Crick pair (whose A10U mutation increases quantum yield to 0.66), and a pyrimidine perpendicular to the nucleobase planes of those motifs. The improved iMango-III and Mango-III(A10U) fluoresce ~50% brighter than enhanced green fluorescent protein, making them suitable tags for live cell RNA visualization.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Aptámeros de Nucleótidos/genética , Mutación , Conformación de Ácido Nucleico
10.
Molecules ; 26(1)2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33401638

RESUMEN

In this review, the experimental set-up and functional characteristics of single-wavelength and broad-band femtosecond upconversion spectrophotofluorometers developed in our laboratory are described. We discuss applications of this technique to biophysical problems, such as ultrafast fluorescence quenching and solvation dynamics of tryptophan, peptides, proteins, reduced nicotinamide adenine dinucleotide (NADH), and nucleic acids. In the tryptophan dynamics field, especially for proteins, two types of solvation dynamics on different time scales have been well explored: ~1 ps for bulk water, and tens of picoseconds for "biological water", a term that combines effects of water and macromolecule dynamics. In addition, some proteins also show quasi-static self-quenching (QSSQ) phenomena. Interestingly, in our more recent work, we also find that similar mixtures of quenching and solvation dynamics occur for the metabolic cofactor NADH. In this review, we add a brief overview of the emerging development of fluorescent RNA aptamers and their potential application to live cell imaging, while noting how ultrafast measurement may speed their optimization.


Asunto(s)
Fluorescencia , Ácidos Nucleicos/química , Péptidos/química , Proteínas/química , Biofisica , Espectrometría de Fluorescencia , Triptófano/química
11.
Proc Natl Acad Sci U S A ; 114(18): 4805-4810, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28373558

RESUMEN

The artery wall is equipped with a water permeation barrier that allows blood to flow at high pressure without significant water leak. The precise location of this barrier is unknown despite its importance in vascular function and its contribution to many vascular complications when it is compromised. Herein we map the water permeability in intact arteries, using coherent anti-Stokes Raman scattering (CARS) microscopy and isotopic perfusion experiments. Generation of the CARS signal is optimized for water imaging with broadband excitation. We identify the water permeation barrier as the endothelial basolateral membrane and show that the apical membrane is highly permeable. This is confirmed by the distribution of the AQP1 water channel within endothelial membranes. These results indicate that arterial pressure equilibrates within the endothelium and is transmitted to the supporting basement membrane and internal elastic lamina macromolecules with minimal deformation of the sensitive endothelial cell. Disruption of this pressure transmission could contribute to endothelial cell dysfunction in various pathologies.


Asunto(s)
Acuaporina 1/metabolismo , Arterias , Permeabilidad Capilar , Endotelio Vascular , Microscopía Óptica no Lineal , Animales , Arterias/diagnóstico por imagen , Arterias/metabolismo , Endotelio Vascular/diagnóstico por imagen , Endotelio Vascular/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
12.
J Physiol ; 597(22): 5411-5428, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31490555

RESUMEN

KEY POINTS: We developed a novel metabolic imaging approach that provides direct measures of the rate of mitochondrial energy conversion with single-cell and subcellular resolution by evaluating NADH autofluorescence kinetics during the mitochondrial redox after cyanide experiment (mitoRACE). Measures of mitochondrial NADH flux by mitoRACE are sensitive to physiological and pharmacological perturbations in vivo. Metabolic imaging with mitoRACE provides a highly adaptable platform for evaluating mitochondrial function in vivo and in single cells with potential for broad applications in the study of energy metabolism. ABSTRACT: Mitochondria play a critical role in numerous cell types and diseases, and structure and function of mitochondria can vary greatly among cells or within different regions of the same cell. However, there are currently limited methodologies that provide direct assessments of mitochondrial function in vivo, and contemporary measures of mitochondrial energy conversion lack the spatial resolution necessary to address cellular and subcellular heterogeneity. Here, we describe a novel metabolic imaging approach that provides direct measures of mitochondrial energy conversion with single-cell and subcellular resolution by evaluating NADH autofluorescence kinetics during the mitochondrial redox after cyanide experiment (mitoRACE). MitoRACE measures the rate of NADH flux through the steady-state mitochondrial NADH pool by rapidly inhibiting mitochondrial energetic flux, resulting in an immediate, linear increase in NADH fluorescence proportional to the steady-state NADH flux rate, thereby providing a direct measure of mitochondrial NADH flux. The experiments presented here demonstrate the sensitivity of this technique to detect physiological and pharmacological changes in mitochondrial flux within tissues of living animals and reveal the unique capability of this technique to evaluate mitochondrial function with single-cell and subcellular resolution in different cell types in vivo and in cell culture. Furthermore, we highlight the potential applications of mitoRACE by showing that within single neurons, mitochondria in neurites have higher energetic flux rates than mitochondria in the cell body. Metabolic imaging with mitoRACE provides a highly adaptable platform for evaluating mitochondrial function in vivo and in single cells, with potential for broad applications in the study of energy metabolism.


Asunto(s)
Cianuros/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Animales , Metabolismo Energético/fisiología , Fluorescencia , Cinética , Masculino , Ratones Endogámicos C57BL , Oxidación-Reducción
13.
J Microsc ; 274(3): 168-176, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31012103

RESUMEN

Here we show an easy method for determining an effective dye saturation factor ('PSTED ') for STED (Stimulated Emission Depletion) microscopy. We define PSTED to be a combined microscope system plus dye factor (analogous to the traditional ground truth Is measurement, which is microscope independent) that is functionally defined as the power in the depletion beam that provides a resolution enhancement of 41% compared to confocal, according to the modified Abbe's formula for STED resolution enhancement. We show that the determination of PSTED provides insight not only into the suitability of a particular dye and the best imaging parameters to be used for an experiment, but also sets the critical value for correctly determining the point spread function (PSF) used in deconvolution of STED images. PSTED can be a function of many experimental variables, both microscope and sample related. Here we show the utility of doing PSTED determinations by (1) exploiting the simple relationship between width and a threshold-defined area provided by a Gaussian PSF, for either linear or spherical objects and (2) linearising the normally inverse hyperbolic function of resolution versus power that can determine PSTED . We show that this rearrangement allows us to determine PSTED using only a few measurements: either at a few relatively low depletion powers, on traditional bead size measurements or by finding the total area of a naturally occurring sub-limit sized biological feature (in this case, microtubules). We show the derivation of these equations and methods and the utility of its use by characterising several dyes and a local imaging parameter relevant to STED microscopy. This information is used to predict the enhancement of resolution of the point spread function necessary for post-processing deconvolution. LAY DESCRIPTION: Stimulated Emission Depletion (STED) microscopy is a fluorescence imaging superresolution technique that achieves tens of nanometres resolution. This is done by utilising a depletion laser to effectively quench (deplete) fluorescence in a donut shape overlapping the normally excited fluorescence spot. The size of the remaining (undepleted) central fluorescence spot is power dependent allowing 'tunable' resolution with the power of the STED depletion laser. This depletion power versus resolution relationship is dye and instrument dependent. We have developed a method for quickly measuring this relationship to optimise experiments based on individual dyes and microscope specific parameters. This allows for quickly optimising microscope settings and for correctly postprocessing images.


Asunto(s)
Algoritmos , Colorantes , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Línea Celular Tumoral , Humanos , Microtúbulos/ultraestructura
14.
Chem Phys Lett ; 726: 18-21, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32921799

RESUMEN

The metabolic cofactor and energy carrier NADH (nicotinamide adenine dinucleotide, reduced) has fluorescence yield and lifetime that depends strongly on conformation, a fact that has enabled metabolic monitoring of cells via FLIM (Fluorescence Lifetime Microscopy). Using femtosecond fluorescence upconversion, we show that this molecule in solution participates in ultrafast self-quenching along with both bulk solvent relaxation and spectral relaxation on 1.4 and 26 ps timescales. This, in effect, means up to a third of NADH is effectively "dark" for FLIM in the 400-500 nm observation window commonly employed. Methods to compensate for, avoid or measure dark species corrections are outlined.

15.
Biochemistry ; 57(26): 3544-3548, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29768001

RESUMEN

Several RNA aptamers that bind small molecules and enhance their fluorescence have been successfully used to tag and track RNAs in vivo, but these genetically encodable tags have not yet achieved single-fluorophore resolution. Recently, Mango-II, an RNA that binds TO1-Biotin with ∼1 nM affinity and enhances its fluorescence by >1500-fold, was isolated by fluorescence selection from the pool that yielded the original RNA Mango. We determined the crystal structures of Mango-II in complex with two fluorophores, TO1-Biotin and TO3-Biotin, and found that despite their high affinity, the ligands adopt multiple distinct conformations, indicative of a binding pocket with modest stereoselectivity. Mutational analysis of the binding site led to Mango-II(A22U), which retains high affinity for TO1-Biotin but now discriminates >5-fold against TO3-biotin. Moreover, fluorescence enhancement of TO1-Biotin increases by 18%, while that of TO3-Biotin decreases by 25%. Crystallographic, spectroscopic, and analogue studies show that the A22U mutation improves conformational homogeneity and shape complementarity of the fluorophore-RNA interface. Our work demonstrates that even after extensive functional selection, aptamer RNAs can be further improved through structure-guided engineering.


Asunto(s)
Aptámeros de Nucleótidos/química , Benzotiazoles/química , Biotina/química , Colorantes Fluorescentes/química , Quinolinas/química , Sitios de Unión , Cristalografía por Rayos X , Simulación del Acoplamiento Molecular
16.
J Am Chem Soc ; 136(7): 2739-47, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24456037

RESUMEN

The protein-water interface is a critical determinant of protein structure and function, yet the precise nature of dynamics in this complex system remains elusive. Tryptophan fluorescence has become the probe of choice for such dynamics on the picosecond time scale (especially via fluorescence "upconversion"). In the absence of ultrafast ("quasi-static") quenching from nearby groups, the TDFSS (time-dependent fluorescence Stokes shift) for exposed Trp directly reports on dipolar relaxation near the interface (both water and polypeptide). The small protein GB1 contains a single Trp (W43) of this type, and its structure is refractory to pH above 3. Thus, it can be used to examine the dependence of dipolar relaxation upon charge reconfiguration with titration. Somewhat surprisingly, the dipolar dynamics in the 100 fs to 100 ps range were unchanged with pH, although nanosecond yield, rates, and access all changed. These results were rationalized with the help of molecular dynamics (including QM-MM) simulations that reveal a balancing, sometimes even countervailing influence of protein and water dipoles. Interestingly, these simulations also showed the dominant influence of water molecules which are associated with the protein interface for up to 30 ps yet free to rotate at approximately "bulk" water rates.


Asunto(s)
Proteínas Bacterianas/química , Simulación de Dinámica Molecular , Triptófano/química , Agua/química , Concentración de Iones de Hidrógeno , Fotones , Conformación Proteica , Espectrometría de Fluorescencia
17.
Mol Imaging ; 132014.
Artículo en Inglés | MEDLINE | ID: mdl-25022347

RESUMEN

Basal cell carcinoma (BCC), the most common cancer in humans, appears macroscopically and microscopically similar to many other skin lesions, which makes differential diagnosis difficult. We are developing an approach for quantitative molecular imaging of BerEP4, a transmembrane biomarker for BCC, with the goal of increasing the precision and accuracy of diagnosis. This pilot study was conducted to assess the affinity and selectivity of BerEp4 antibody and assess its possible use in designing theranostic probes for BCC. We provide evidence that our photon-counting fluorescence macrodetection system can recover specific signal increases from a film/pellet phantom. Additionally, we show that a two-photon excited fluorescence /backscatter confocal microscopy system can image BerEP4 antibody/antigen complex on the surface of BerEP4-expressing cancer cells in three dimensions. Based on the initial results, BerEP4 seems to be a promising biomarker for molecular imaging of BCC. To prepare BerEP4 for eventual theranostic use, we examined the feasibility of a combined macro-/micro-optical approach to imaging BCC with various histologies. These optical methods, endowed with the ability to monitor treatment in real time, may open an opportunity for noninvasive diagnosis, treatments, and follow-up.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Basocelular/diagnóstico por imagen , Neoplasias Cutáneas/diagnóstico por imagen , Anticuerpos Monoclonales , Carcinoma Basocelular/metabolismo , Línea Celular Tumoral , Humanos , Microscopía Confocal , Fantasmas de Imagen , Proyectos Piloto , Cintigrafía , Neoplasias Cutáneas/metabolismo
18.
J Microsc ; 253(2): 83-92, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24251437

RESUMEN

We describe a compact, non-contact design for a total emission detection (c-TED) system for intra-vital multiphoton imaging. To conform to a standard upright two-photon microscope design, this system uses a parabolic mirror surrounding a standard microscope objective in concert with an optical path that does not interfere with normal microscope operation. The non-contact design of this device allows for maximal light collection without disrupting the physiology of the specimen being examined. Tests were conducted on exposed tissues in live animals to examine the emission collection enhancement of the c-TED device compared to heavily optimized objective-based emission collection. The best light collection enhancement was seen from murine fat (5×-2× gains as a function of depth), whereas murine skeletal muscle and rat kidney showed gains of over two and just under twofold near the surface, respectively. Gains decreased with imaging depth (particularly in the kidney). Zebrafish imaging on a reflective substrate showed close to a twofold gain throughout the entire volume of an intact embryo (approximately 150 µm deep). Direct measurement of bleaching rates confirmed that the lower laser powers, enabled by greater light collection efficiency, yielded reduced photobleaching in vivo. The potential benefits of increased light collection in terms of speed of imaging and reduced photo-damage, as well as the applicability of this device to other multiphoton imaging methods is discussed.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Embrión no Mamífero/anatomía & histología , Riñón/anatomía & histología , Rayos Láser , Lípidos/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/anatomía & histología , Fotoblanqueo , Ratas , Ratas Sprague-Dawley , Relación Señal-Ruido , Pez Cebra/anatomía & histología
19.
J Biol Chem ; 287(20): 16311-23, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22433855

RESUMEN

Many cellular processes depend on ERM (ezrin, moesin, and radixin) proteins mediating regulated linkage between plasma membrane and actin cytoskeleton. Although conformational activation of the ERM protein is mediated by the membrane PIP2, the known properties of the two described PIP2-binding sites do not explain activation. To elucidate the structural basis of possible mechanisms, we generated informative moesin mutations and tested three attributes: membrane localization of the expressed moesin, moesin binding to PIP2, and PIP2-induced release of moesin autoinhibition. The results demonstrate for the first time that the POCKET containing inositol 1,4,5-trisphosphate on crystal structure (the "POCKET" Lys-63, Lys-278 residues) mediates all three functions. Furthermore the second described PIP2-binding site (the "PATCH," Lys-253/Lys-254, Lys-262/Lys-263) is also essential for all three functions. In native autoinhibited ERM proteins, the POCKET is a cavity masked by an acidic linker, which we designate the "FLAP." Analysis of three mutant moesin constructs predicted to influence FLAP function demonstrated that the FLAP is a functional autoinhibitory region. Moreover, analysis of the cooperativity and stoichiometry demonstrate that the PATCH and POCKET do not bind PIP2 simultaneously. Based on our data and supporting published data, we propose a model of progressive activation of autoinhibited moesin by a single PIP2 molecule in the membrane. Initial transient binding of PIP2 to the PATCH initiates release of the FLAP, which enables transition of the same PIP2 molecule into the newly exposed POCKET where it binds stably and completes the conformational activation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Citoesqueleto de Actina/genética , Sitios de Unión , Membrana Celular/genética , Humanos , Células Jurkat , Proteínas de Microfilamentos/genética , Mutación , Fosfatidilinositol 4,5-Difosfato/genética
20.
Methods Mol Biol ; 2568: 25-36, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36227560

RESUMEN

Fluorescent RNA aptamers are tools for studying RNA localization and interactions in vivo. The photophysical properties of these in vitro selected RNAs should be characterized prior to cellular imaging experiments. Here, we describe the process of determining the fluorophore affinity, fluorescence enhancement, and fluorescence lifetime(s) of the Mango-III fluorescence turn-on aptamer. Parameters determined through these protocols will aid in establishing conditions for live-cell imaging.


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/genética , Fluorescencia , Colorantes Fluorescentes , ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA