Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Environ Res ; 224: 115553, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822530

RESUMEN

This study explored the potential of steam gasification of sewage sludge over different temperatures (non-catalytic) and bimetallic (Ni-Fe and Ni-Co) mesoporous Al-MCM48 (3-5% Al basis). The higher temperature (800 °C) resulted in higher gas yield (36.74 wt%) and syngas (H2 and CO) selectivity (35.30 vol% and 11.66 vol%). Moreover, catalytic approach displayed that the Al-MCM48 was effective support because the incorporation of nickel increased the efficiency of gasification reactions compared to HZSM-5 (30). It mainly comes from the presence of mesopores and higher surface area (710.05 m2/g) providing more reaction sites and higher stability (less coke formation). Furthermore, the addition of promoters such as Co and Fe allowed the formation of Ni-Fe and Ni-Co alloys, resulting in even higher gas yield and overall H2 and CO selectivity due to the promotion of related reactions such as tar cracking, Boudouard, water gas shift and reforming and so on. Ni-Co alloy catalyst (10% Ni-5% Co/Al-MCM48) resulted in the highest H2 (∼52 vol%) selectivity due to the enhanced Ni dispersion and synergy effect between Ni and Co. Moreover, the application of bi-metal alloy on Al-MCM48 showed no coke formation and significantly reduced CO2 and hydrocarbon selectivity in the product gas. Overall, this study presented a promising solution for sewage sludge disposal in terms of clean H2 generation, reduction in CO2 and higher stability of metal based catalysts at the same time.


Asunto(s)
Aguas del Alcantarillado , Vapor , Dióxido de Carbono , Aleaciones , Hidrógeno
2.
J Environ Manage ; 294: 112959, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34116308

RESUMEN

This study highlights the potential of pyrolysis of food waste (FW) with Ni-based catalysts under CO2 atmosphere as an environmentally benign disposal technique. FW was pyrolyzed with homo-type Ni/Al2O3 (Ni-HO) or eggshell-type Ni/Al2O3 (Ni-EG) catalysts under flowing CO2 (50 mL/min) at temperatures from 500 to 700 °C for 1 h. A higher gas yield (42.05 wt%) and a lower condensable yield (36.28 wt%) were achieved for catalytic pyrolysis with Ni-EG than with Ni-HO (34.94 wt% and 40.06 wt%, respectively). In particular, the maximum volumetric content of H2 (21.48%) and CO (28.43%) and the lowest content of C2-C4 (19.22%) were obtained using the Ni-EG. The formation of cyclic species (e.g., benzene derivatives) in bio-oil was also effectively suppressed (24.87%) when the Ni-EG catalyst and CO2 medium were concurrently utilized for the FW pyrolysis. Accordingly, the simultaneous use of the Ni-EG catalyst and CO2 contributed to altering the carbon distribution of the pyrolytic products from condensable species to value-added gaseous products by facilitating ring-opening reactions and free radical mechanisms. This study should suggest that CO2-assisted catalytic pyrolysis over the Ni-EG catalyst would be an eco-friendly and sustainable strategy for disposal of FW which also provides a clean and high-quality source of energy.


Asunto(s)
Pirólisis , Eliminación de Residuos , Animales , Dióxido de Carbono , Cáscara de Huevo , Temperatura
3.
J Environ Manage ; 232: 330-335, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30496962

RESUMEN

Acetaldehyde removal tests were performed to compare the catalytic activity of the Kraft lignin char (KC), KOH-treated Kraft lignin char (KKC), and activated carbon (AC) along with their impregnation with Mn in a plasma reactor. The gasification characteristics (syngas content, and H2/CO ratio) of yellow poplar were investigated using nickel catalysts supported on KC, KKC, AC, and γ-Al2O3 in a U-type quartz reactor. KKC and Mn/KKC improved significantly the surface area and contents of O and N functional groups over the raw char. In particular, Mn/KKC showed the highest acetaldehyde-removal efficiency. The catalytic activity of Ni-impregnated KC, KKC, AC, and γ-Al2O3 decreased in the order of Ni/KKC > Ni/AC > Ni/KC > Ni/γ-Al2O3 for the gas yield and Ni/γ-Al2O3 >Ni/KC > Ni/AC >Ni/KKC for the oil yield, respectively. The Ni/KKC provides a more conducive environment for gasification, resulting in larger amounts of syngas (H2 and CO) in the product gases. Moreover, Ni impregnated with char may be the most inexpensive and effective solution for achieving maximum tar reduction and syngas generation.


Asunto(s)
Acetaldehído , Gases , Biomasa , Catálisis , Lignina , Metales
4.
J Nanosci Nanotechnol ; 18(2): 1351-1355, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448590

RESUMEN

The catalytic pyrolysis of waste Korean pine nut shell (KPNS) over mesoporous Al2O3 was investigated by thermogravimetric analysis (TGA) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS). TGA results showed that the thermal and catalytic pyrolysis of KPNS over mesoporous Al2O3 has the same decomposition temperature. On the other hand, the maximum decomposition for the catalytic pyrolysis of KPNS over commercial-Al2O3 shifted to a higher temperature. The Py-GC/MS results indicated that large amounts of oxygen-containing pyrolyzates, such as acids, furans, levoglucosan, and phenols, were produced by the non-catalytic pyrolysis of KPNS. These oxygen-containing pyrolyzates were upgraded efficiently into aromatic hydrocarbons by applying Al2O3 catalysts. Between the two Al2O3 catalysts, mesoporous Al2O3 showed better performance on the formation of aromatic hydrocarbons via the catalytic pyrolysis of KPNS than commercial Al2O3 because of its uniform larger pores.

5.
J Nanosci Nanotechnol ; 18(2): 1331-1335, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448585

RESUMEN

The catalytic hydrodeoxygenation (HDO) of bio-oil over Ni-supported mesoporous materials was performed using a high pressure autoclave reactor. The actual pyrolysis oil of cork oak wood was used as a sample, and Ni/Al-SBA-15 and Ni/Al-MSU-F were used as catalysts. In addition, supercritical ethanol was added as solvent. Both Ni-supported mesoporous catalysts showed efficient HDO reaction ability. A higher heating value and pH of bio-oil were achieved by the HDO reaction over both catalysts and upgraded bio-oil had a lower viscosity. Compared to Ni/Al-MSU-F, Ni/Al- SBA-15 produced more upgraded bio-oil with a lower oxygen content and higher heating value via a catalytic HDO process.

6.
J Nanosci Nanotechnol ; 18(9): 6300-6303, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29677785

RESUMEN

The thermal and catalytic pyrolysis of Pinus densiflora (P. densiflora) were performed to test the catalytic cracking efficiency of two mesoporous Al2O3 catalysts with different surface areas. Thermogravimetric analysis (TGA) of P. densiflora showed that the differential TG (DTG) peak heights obtained from catalytic pyrolysis were smaller than those of non-catalytic pyrolysis due to the conversion of the reaction intermediates to coke. Pyrolyzer-gas chromatography/mass spectrometry analysis/flame ionization detection (Py-GC/MS/FID) suggested that using the Al2O3 catalysts, the yields of phenols and levoglucosan decreased with a concomitant increase in the yields of aldehydes, alcohol, ketones, and furans. Between the two catalysts, Al2O3-B prepared by spray pyrolysis showed higher cracking efficiency than Al2O3-A prepared by hydrothermal method because of its larger surface area.

7.
J Nanosci Nanotechnol ; 16(5): 4393-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27483762

RESUMEN

In hydrogen production by methanol steam reforming reaction with microchannel reactor, Al2O3 thin film formed by atomic layer deposition (ALD) was introduced on the surface of microchannel reactor prior to the coating of catalyst particles. Methanol conversion rate and hydrogen production rate, increased in the presence of Al2O3 thin film. Over-view and cross-sectional scanning electron microscopy study showed that the adhesion between catalyst particles and the surface of microchannel reactor enhanced due to the presence of Al2O3 thin film. The improvement of hydrogen production rate inside the channels of microreactor mainly came from the stable fixation of catalyst particles on the surface of microchannels.


Asunto(s)
Óxido de Aluminio/química , Hidrógeno/química , Nanopartículas del Metal/química , Metanol/química , Nanotecnología/instrumentación , Vapor , Adhesividad , Catálisis , Diseño de Equipo , Análisis de Falla de Equipo , Hidrógeno/aislamiento & purificación , Ensayo de Materiales , Membranas Artificiales , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula
8.
J Nanosci Nanotechnol ; 12(2): 1629-33, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22630016

RESUMEN

Silicon thin film was formed by dropping silicon ink on a single-crystalline silicon substrate and further annealing. The effects of the annealing conditions on the microstructures of thin film were investigated in order to obtain a crystalline silicon thin film for application in the field of printable electronics. Silicon ink was prepared by dispersing silicon nanoparticles synthesized using inductive coupled plasma in a solvent, namely, propylene glycol. The silicon nanoparticles in the as-synthesized film were observed to melt at a temperature of less than 1000 degrees C, and a highly crystalline silicon thin film was obtained by annealing at 800 degrees C for 180 min.

9.
J Nanosci Nanotechnol ; 12(2): 1589-93, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22630007

RESUMEN

Silicon nanoparticles were synthesized by passing monosilane through a quartz tube wrapped with Inductive Coupled Plasma (ICP) coil. Microstructures of synthesized silicon nanoparticles were investigated with various process conditions. To research the effects of process parameters on the properties of nanoparticles, we verified the partial pressure of monosilane, the plasma power and the working pressure. The highly crystalline silicon nanoparticles were only achieved at the proper partial pressure of the reactive gas and plasma power. Partial pressure determined not only the particle size but also the crystallinity of the nanoparticles. The plasma power was controlled from 50 to 100 W which determined not the particle size but the crystallinity of nanoparticles. Especially, too low a power resulted in amorphous particles with an average sizes of 5.25 nm. As the working pressure increased, the amount of produced nanoparticles linearly increased and the maximum production yield was at 76 mg/hr. Controlling those parameters, we achieved monodispersed single crystalline silicon nanoparticles with an average diameter of 7.52 nm. Silicon nanoparticles in this study can be applied to light absorbing material for solar cells and the wavelength down-converter material of Light Emitting Diode (LED).

10.
J Nanosci Nanotechnol ; 12(7): 5870-4, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22966672

RESUMEN

MWNT-CdSe hybrid nanomaterials were prepared with carboxylic acid-treated CdSe nanoparticles and amino-functionalized MWNTs. The hybridization of MWNT-CdSe nanomaterials was performed by the formation of covalent bond between MWNT and CdSe. Their covalent bond lengths were varied with changing the linking spacers. Amino-functionalized MWNTs were reacted with CdSe nanoparticles which were functionalized with carboxylic acid groups. Their detailed structures were characterized by FT-IR, XPS, and small angle X-ray scattering. Through small angle X-ray scattering experiments, it was found that the structures of CdSe nanoparticles were not regular, and their sizes were broadly distributed in solution. The longer amino-functionalized MWNTs were thermally decomposed at lower temperature. The photoluminescence (PL) of chemically-linked MWNT-CdSe hybrid nanomaterials were weaker than that of CdSe nanoparticles. In addition, their PL intensities more weakened on the MWNT-CdSe with the longer spacers.

11.
Bioresour Technol ; 366: 128209, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36323373

RESUMEN

Household food waste (FW) was converted into biohydrogen-rich gas via steam gasification over Ni and bimetallic Ni (Cu-Ni and Co-Ni) catalysts supported on mesoporous SBA-15. The effect of catalyst method on steam gasification efficiency of each catalyst was investigated using incipient wetness impregnation, deposition precipitation, and ethylenediaminetetraacetic acid metal complex impregnation methods. H2-TPR confirmed the synergistic interaction of the dopants (Co and Cu) and Ni. Furthermore, XRD and HR-TEM revealed that the size of the Ni particle varied depending on the method of catalyst synthesis, confirming the formation of solid solutions in Co- or Cu-doped Ni/SBA-15 catalysts due to dopant insertion into the Ni. Notably, the exceptional activity of the Cu-Ni/SBA-15-EMC catalyst in FW steam gasification was attributed to the fine distribution of the concise Ni nanoparticles (9 nm), which resulted in the highest hydrogen selectivity (62 vol%), gas yield (73.6 wt%). Likewise, Cu-Ni solid solution decreased coke to 0.08 wt%.


Asunto(s)
Eliminación de Residuos , Vapor , Níquel , Cobre , Alimentos , Catálisis
12.
J Hazard Mater ; 423(Pt B): 127222, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34560479

RESUMEN

This study proposes a method to valorize hazardous waste such as used COVID-19 face mask via catalytic gasification over Ni-loaded ZSM-5 type zeolites. The 25% Ni was found as an optimal loading on ZSM-5 in terms of H2 production. Among different zeolites (ZSM-5(30), ZSM-5(80), ZSM-5(280), mesoporous (m)-ZSM-5(30), and HY(30)), 25% Ni/m-ZSM-5(30) led to the highest H2 selectivity (45.04 vol%), most likely because of the highest Ni dispersion on the m-ZSM-5(30) surface, high porosity, and acid site density of the m-ZSM-5(30). The content of N-containing species (e.g., caprolactum and nitriles) in the gasification product was also reduced, when steam was used as gasifying agent, which is the source of potentially hazardous air pollutants (e.g., NOx). The increase in the SiO2/Al2O3 ratio resulted in lower tar conversion and lower H2 generation. At comparable conditions, steam gasification of the mask led to ~15 vol% higher H2 selectivity than air gasification. Overall, the Ni-loaded zeolite catalyst can not only suppress the formation of hazardous substances but also enhance the production of hydrogen from the hazardous waste material such as COVID-19 mask waste.

13.
Bioelectrochemistry ; 145: 108102, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35338862

RESUMEN

CO2 can be a next generation feedstock for electricity-driven bioproduction due to its abundance and availability. Microbial electrosynthesis (MES), a promising technique for CO2 electroconversion, provides an attractive route for the production of valuable products from CO2, but issues surrounding efficiency and reasonable productivity should be resolved. Improving the anode performance for water oxidation under neutral pH is one of the most important aspects to advance current MES. Here, we introduce cobalt-phosphate (Co-Pi) assisted water oxidation at the counter electrode (i.e., anode) to upgrade the MES performance at pH 7.0. We show that CO2 can be converted by photochemoautotrophic bacterium, Rhodobacter sphaeroides into organic acids and carotenoids in the MES reactor. Planktonic cells of R. sphareroides in the Co-Pi anode equipped MES reactor was ca. 1.5-fold higher than in the control condition (w/o Co-Pi). The faradaic efficiency of the Co-Pi anode equipped MES reactor was remarkably higher (58.3%) than that of the bare anode (27.8%). While the system can improve the CO2 electroconversion nonetheless there are some further optimizations are necessary.


Asunto(s)
Rhodobacter sphaeroides , Dióxido de Carbono , Cobalto , Electrodos , Fosfatos , Agua
14.
Chemosphere ; 287(Pt 2): 132224, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826918

RESUMEN

Food waste, a renewable resource, was converted to H2-rich gas via a catalytic steam gasification process. The effects of basic oxides (MgO, CaO, and SrO) with 10 wt% Ni/Al2O3 on the gasification properties of food waste were investigated using a U-shaped gasifier. All catalysts prepared by the precipitation method were analyzed by X-ray diffraction, H2-temperature-programmed reduction, NH3-temperature-programmed desorption, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The Ni/Al2O3 catalyst was reduced incompletely, and low nickel concentrations were detected on the surface of the alumina. The basic oxides minimized the number of acid sites and suppressed the formation of nickel-aluminate (NiAlxOy) phase in catalyst. In addition, the basic oxides shifted nickel-aluminate reduction reaction to lower temperatures. It resulted in enhancing nickel concentration on the catalyst surface and increasing gas yield and hydrogen selectivity. The low gas yield of the Ni/Al2O3 catalyst was attributed to the low nickel concentration on the surface. The maximum gas yield (66.0 wt%) and hydrogen selectivity (63.8 vol%) of the 10 wt% SrO- 10 wt% Ni/Al2O3 catalyst correlated with the highly dispersed nickel on the surface and low acidity. Furthermore, coke deposition during steam gasification varied with the surface acidity of the catalysts and less coke was formed on 10 wt% SrO- 10 wt% Ni/Al2O3 due to efficient tar cracking. This study showed that the steam gasification efficiency of the Ni/Al2O3 catalyst could be improved significantly by the addition of SrO.


Asunto(s)
Eliminación de Residuos , Vapor , Biomasa , Alimentos , Hidrógeno , Óxido de Magnesio , Óxidos
15.
J Nanosci Nanotechnol ; 11(1): 730-3, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21446533

RESUMEN

The self-assembly monolayer (SAM) method was used for membrane fabrication, in which Si wafers were treated separately with N-trimethoxysilylpropyl-n,n,n-tri-n-butylammonium bromide (TMSP-TBA) and N-trimethoxysilylpropyl-n,n,n-trimethylammonium chloride (TMSP-TMA) to form monolayers on the Si surfaces. To grow silicate membranes on the organosilyl-treated Si wafers, a series of silicate sols were prepared with composites of tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) as silicate sources, and tetrapropylammonium bromide (TPABr) was used as an organic template. Their microstructures were investigated in detail by comparing them using SEM and XRD. The use of MTES hindered the formation of microporous channels in the calcined silicate samples. The calcined silicate samples became totally amorphous over 20% loading of MTES. In addition, their structural information was supported by spectroscopic (FT-IR and solid-state 29Si NMR) analyses.

16.
J Nanosci Nanotechnol ; 11(7): 6453-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22121734

RESUMEN

Multiwalled carbon nanotube (MWNT) composites with cadmium telluride (CdTe) or cadmium selenide (CdSe) nanoparticles were prepared via electrostatic interaction. The MWNTs were modified with carboxylic acid groups. Both the CdTe and CdSe nanoparticles were stabilized with 2-(dimethylamino) ethanethiol hydrochloride to develop positive charges on their surfaces in water. They were characterized in detail via UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The energy state of the MWNTs was significantly modified by the electrostatic binding between the nanoparticles and carboxylated MWNTs, resulting in absorption at approximately 250 nm. XPS analysis also proved the electronic redistribution of the nanoparticles and the MWNTs. The binding energies of the elements Cd, Se, and Te were definitely changed by the attractive interaction between the nanoparticles and the MWNTs. The distribution of the CdTe or CdSe nanoparticles and the morphologies of the MWNT composites were deliberately investigated from TEM images and XRD.

17.
Biotechnol Lett ; 33(5): 957-60, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21246252

RESUMEN

A simple and reliable method based on thermogravimetric analysis has been developed for determining triacylglycerol content in Chlorella sp. KR-1. There are two decomposing steps during pyrolysis of the microalgal cells and the second step of weight loss may be attributed to degradation and volatilization of triacylglycerols. The second peak height in the temperature derivatives of weight loss increased with the triacylglycerol content of the microalgal cells and the peak was around 390 °C regardless of the triacylglycerol contents. Based on these findings, a linear equation for determining triacylglycerol content was derived. The proposed method gives satisfactory results, showing small variance and a good interpolation capability.


Asunto(s)
Chlorella/química , Termogravimetría/métodos , Triglicéridos/análisis
18.
Bioresour Technol ; 320(Pt B): 124313, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33197736

RESUMEN

Steam and air gasification with 5 wt% Ni/Al2O3 eggshell (Ni-EG) and homo (Ni-H) catalysts were performed for the first time to produce biohydrogen from food waste. The steam gasification produced comparably higher gas yield than air gasification. In non-catalytic experiments, steam gasification generated a higher volume percent of H2, whereas more CO, CO2, CH4, and C2-C4 were produced in air gasification. Ni-EG demonstrated higher potential to obtain H2-rich gases with a low C2-C4 content compared to that obtained by Ni-H, particularly in steam gasification at 800 °C, which produced gaseous products with 59.48 vol% H2. The long-term activity of both catalysts in steam gasification was evaluated, and Ni-EG exhibited higher stability than Ni-H. The ideal distribution of Ni species on the outer region of γ-Al2O3 pellets in Ni-EG resulted in higher activity, stability, and selectivity than Ni-H in both steam and air gasification.


Asunto(s)
Eliminación de Residuos , Vapor , Animales , Biomasa , Catálisis , Cáscara de Huevo , Alimentos
19.
Bioresour Technol ; 305: 123155, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32178996

RESUMEN

Due to climate change, recent research interests have increased towards CO2 utilization as a strategy to mitigate the atmospheric CO2 level. Herein, we aimed to explore formate dehydrogenases (FDHs) from chemoautotroph to discover an efficient and O2-tolerant biocatalyst for catalyzing the CO2 reduction to a versatile formate. Through genome-mining and phylogenetic analysis, the FDH from Rhodobacter aestuarii (RaFDH) was newly discovered as a promising O2-tolernat CO2 reductase and was successfully expressed in Escherichia coli. In this study, the optimum conditions and turnover rates of RaFDH were examined for CO2 reduction and formate oxidation. In particular, the RaFDH-driven CO2 reduction far surpassed the formate oxidation with a turnover rate of 48.3 and 15.6 min-1, respectively. The outstanding superiority of RaFDH towards CO2 reduction can be applicable for constructing a feasible electroenzymatic system that produce a versatile formate from CO2 as a cheap, abundant, and renewable resource.


Asunto(s)
Dióxido de Carbono , Formiato Deshidrogenasas , Formiatos , Oxidación-Reducción , Filogenia , Rhodobacter
20.
Chem Commun (Camb) ; (6): 650-2, 2009 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-19322410

RESUMEN

Highly ordered mesoporous silver, which exhibits well-defined mesopores, high surface area and pore volume, has been successfully obtained using a cubic mesoporous silica, KIT-6, with controlled surface hydrophobicity as the hard template.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA