Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
RNA ; 17(3): 544-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21233222

RESUMEN

The artificial inhibition of expression of genes in Saccharomyces cerevisiae is not a widespread, useful phenomenon. The external guide sequence (EGS) technology, which is well-proven in bacteria and mammalian cells in tissue culture and in mice, can also be utilized in yeast. The TOP2 and SRG1 genes can be inhibited by ∼30% with EGSs in vivo. Results in vitro also show convenient cleavage of the relevant transcripts by RNase P and appropriate EGSs. The feasible constructs shown to date have an EGS covalently linked to M1 RNA, the RNA subunit of RNase P from Escherichia coli. Greater efficiency in cleavage of transcripts can be fashioned using more than one EGS targeted to different sites in a transcript and stronger promoters controlling the EGS constructs.


Asunto(s)
ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Northern Blotting , Escherichia coli/enzimología , Escherichia coli/genética , ARN de Hongos/genética , ARN Mensajero/genética , Ribonucleasa P/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ARN Pequeño no Traducido
2.
Proc Natl Acad Sci U S A ; 106(20): 8163-8, 2009 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-19416872

RESUMEN

The expression of gene products in bacteria can be inhibited by the use of RNA external guide sequences (EGSs) that hybridize to a target mRNA. Endogenous RNase P cleaves the mRNA in the complex, making it inactive. EGSs participate in this biochemical reaction as the data presented here show. They promote mRNA cleavage at the expected site and sometimes at other secondary sites. Higher-order structure must affect these reactions if the cleavage does not occur at the defined site, which has been determined by techniques based on their ability to find sites that are accessible to the EGS oligonucleotides. Sites defined by a random EGS technique occur as expected. Oligonucleotides made up primarily of defined or random nucleotides are extremely useful in inhibiting expression of the gyrA and rnpA genes from several different bacteria or the cat gene that determines resistance to chloramphenicol in Escherichia coli. An EGS made up of a peptide-phosphorodiamidate morpholino oligonucleotide (PPMO) does not cleave at the same site as an unmodified RNA EGS for reasons that are only partly understood. However, PPMO-EGSs are useful in inhibiting the expression of targeted genes from Gram-negative and Gram-positive organisms during ordinary growth in broth and may provide a basis for broad-spectrum antibiotics.


Asunto(s)
ARN sin Sentido/genética , ARN Bacteriano/antagonistas & inhibidores , Antibacterianos , Sitios de Unión , Hidrólisis , Conformación de Ácido Nucleico , Oligonucleótidos/química , Oligonucleótidos/farmacología , ARN sin Sentido/química , ARN sin Sentido/farmacología , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido
3.
Proc Natl Acad Sci U S A ; 105(7): 2354-7, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18263737

RESUMEN

A method of inhibiting the expression of particular genes by using external guide sequences (EGSs) has been improved in its rapidity and specificity. Random EGSs that have 14-nt random sequences are used in the selection procedure for an EGS that attacks the mRNA for a gene in a particular location. A mixture of the random EGSs, the particular target RNA, and RNase P is used in the diagnostic procedure, which, after completion, is analyzed in a gel with suitable control lanes. Within a few hours, the procedure is complete. The action of EGSs designed by an older method is compared with EGSs designed by the random EGS method on mRNAs from two bacterial pathogens.


Asunto(s)
Escherichia coli/enzimología , Ribonucleasa P/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Bases de Datos de Ácidos Nucleicos , ARN Mensajero/genética , Ribonucleasa P/genética , Sensibilidad y Especificidad
4.
RNA ; 14(8): 1656-62, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18567813

RESUMEN

External guide sequences (EGSs) targeting virulence genes from Yersinia pestis were designed and tested in vitro and in vivo in Escherichia coli. Linear EGSs and M1 RNA-linked EGSs were designed for the yscN and yscS genes that are involved in type III secretion in Y. pestis. RNase P from E. coli cleaves the messages of yscN and yscS in vitro with the cognate EGSs, and the expression of the EGSs resulted in the reduction of the levels of these messages of the virulence genes when those genes were expressed in E. coli.


Asunto(s)
Escherichia coli/metabolismo , Yersinia pestis/genética , Yersinia pestis/patogenicidad , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Técnicas Bacteriológicas , Secuencia de Bases , Proteínas Portadoras/genética , Expresión Génica , Técnicas Genéticas , Proteínas de la Membrana/genética , Ribonucleasa P/metabolismo
5.
FEBS Lett ; 580(2): 539-44, 2006 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-16405963

RESUMEN

Initiation factor 1 (IF1) is an essential protein in Escherichia coli involved in the initiation step of protein synthesis. The protein level of IF1 increases when E. coli cells are subjected to cold shock, however, it remains unclear as to how this increase occurs. The infA gene encoding IF1 contains two promoters, the distal P1 and the proximal P2 promoter. In this study, we found that infA mRNA was greatly increased, and that this increase resulted from transcriptional activation of P1, not P2, during cold shock although stability of transcripts from both promoters concomitantly increased.


Asunto(s)
Frío , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Factor 1 Procariótico de Iniciación , Regiones Promotoras Genéticas , Secuencia de Bases , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Factor 1 Procariótico de Iniciación/genética , Factor 1 Procariótico de Iniciación/metabolismo , Estabilidad del ARN
6.
J Microbiol Methods ; 64(3): 297-304, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15987660

RESUMEN

The cDNA conversion of RNA molecules is a prerequisite for their analysis. In the case of prokaryotic RNAs, cDNA conversion is difficult due to a lack of the long poly(A) tails that are found in eukaryotic mRNAs. The full cDNAs for eukaryotic mRNAs can be amplified by the reverse transcription polymerase chain reaction (RT-PCR) using the template-switching method together with an oligo(dT) primer. To amplify the full cDNAs for prokaryotic RNAs, we modified the template-switching RT-PCR method by adopting an RNA linker at the 3' end of the target RNAs. Using this method, which we named as RNA-conjugated template-switching RT-PCR (RC/TS RT-PCR), we constructed a cDNA library for small RNAs from cold-shock-treated Escherichia coli cells. To confirm that the cDNAs were amplified by RC/TS RT-PCR without a loss of sequence information, clones carrying the 6S RNA sequence were analyzed from the cDNA library for small RNAs ranging from 130 to 350 nt. We found that the 6S RNA sequences were fully converted into the corresponding cDNAs, confirming that RC/TS RT-PCR is a useful method for constructing a cDNA library for small RNAs in E. coli. This method can be also used to construct a cDNA library for non-poly(A)-containing RNAs from eukaryotic cells.


Asunto(s)
Escherichia coli/genética , Biblioteca de Genes , ARN Bacteriano/genética , ARN no Traducido/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Northern Blotting , ARN Bacteriano/química , ARN no Traducido/química , Moldes Genéticos
7.
J Biochem ; 136(5): 693-9, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15632310

RESUMEN

To gain insight into the mechanism by which the sequence at the rne-dependent site of substrate RNA affects the substrate specificity of Escherichia coli RNase E, we performed kinetic analysis of the cleavage of precursor M1 RNA molecules containing various sequences at the rne-dependent site by the N-terminal catalytic half of RNase E (NTH-RNase E). NTH-RNase E displayed higher K(m) and k(cat) values for more specific substrates. The retention of single strandedness at the rne-dependent site was essential for cleavage efficiency. Moreover, the loss of single-strandedness was accompanied by a decrease in both the K(m) and k(cat) values.


Asunto(s)
Endorribonucleasas/metabolismo , Precursores del ARN/metabolismo , ARN Catalítico/metabolismo , Endorribonucleasas/genética , Escherichia coli/enzimología , Variación Genética , Cinética , Conformación de Ácido Nucleico , Precursores del ARN/química , ARN Catalítico/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Factores de Tiempo
8.
FEBS Lett ; 587(19): 3243-8, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23994531

RESUMEN

Pyrrolysyl-tRNA synthetase (PylRS) is a class IIc aminoacyl-tRNA synthetase that is related to phenylalanyl-tRNA synthetase (PheRS). Genetic selection provided PylRS variants with a broad range of specificity for diverse non-canonical amino acids (ncAAs). One variant is a specific phenylalanine-incorporating enzyme. Structural models of the PylRSamino acid complex show that the small pocket size and π-interaction play an important role in specific recognition of Phe and the engineered PylRS active site resembles that of Escherichia coli PheRS.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Lisina/análogos & derivados , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Aminoacilación , Codón , Escherichia coli/enzimología , Evolución Molecular , Lisina/metabolismo , Mutación , Especificidad por Sustrato
9.
PLoS One ; 8(12): e83630, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386240

RESUMEN

While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNA(His) have distinctive identity elements, we constructed E. coli tRNA(His) CUA, a UAG suppressor tRNA for C. crescentus. By examining the expression of three UAG codon- containing reporter genes (encoding a ß-lactamase, the fluorescent mCherry protein, or the C. crescentus xylonate dehydratase), we demonstrated that the E. coli histidyl-tRNA synthetase/tRNA(His) CUA pair enables in vivo UAG suppression in C. crescentus. E. coli histidyl-tRNA synthetase (HisRS) or tRNA(His) CUA alone did not achieve suppression; this indicates that the E. coli HisRS/tRNA(His) CUA pair is orthogonal in C. crescentus. These results illustrate that UAG suppression can be achieved in C. crescentus with an orthogonal aminoacyl-tRNA synthetase/suppressor tRNA pair.


Asunto(s)
Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Codón de Terminación , Escherichia coli/genética , Escherichia coli/metabolismo , Histidina-ARNt Ligasa/metabolismo , ARN de Transferencia de Histidina/genética , Resistencia a la Ampicilina/genética , Expresión Génica , Regulación Bacteriana de la Expresión Génica , ARN de Transferencia de Histidina/metabolismo
10.
Biochemistry ; 47(2): 762-70, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18092807

RESUMEN

M1 RNA, the gene product of rnpB, is the catalytic subunit of RNase P in Escherichia coli. M1 RNA is transcribed from a proximal promoter as pM1 RNA, a precursor M1 RNA, and then is processed at its 3' end by RNase E. In addition to pM1 RNA, large rnpB-containing transcripts are produced from unknown upstream promoters. However, it is not known yet how these large transcripts contribute to M1 RNA biosynthesis. To examine their biological relevance to M1 RNA biosynthesis, we constructed a model upstream transcript, upRNA, and analyzed its cellular metabolism. We found that upRNA was primarily degraded rather than processed to M1 RNA in the cell and that this degradation occurred in RNase E-dependent manner. The in vitro cleavage assay with the N-terminal catalytic fraction of RNase E showed that the M1 RNA structural sequence in upRNA was much more vulnerable to the enzyme than the sequence in pM1 RNA. Considering that RNase E is a processing enzyme involved in 3' end formation of M1 RNA, our results imply that this enzyme plays a dual role in processing and degradation to achieve tight control of M1 RNA biosynthesis.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/enzimología , Ribonucleasa P/biosíntesis , Escherichia coli/genética , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasa P/química , Especificidad por Sustrato
11.
Proc Natl Acad Sci U S A ; 104(19): 7815-20, 2007 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-17470803

RESUMEN

OLE (ornate, large, and extremophilic) RNA is a noncoding RNA that is found in several extremophilic bacteria, including Bacillus halodurans. The function of OLE RNA has not been clarified. In this study, we found that RNase P cleaves OLE RNA and that the cleavage leads to a small reduction of expression of a downstream gene determined by analyses in vitro and in vivo. Under RNase P-deficient conditions, the amount of OLE RNA increased. Our results imply that RNase P could play a role in the regulation of gene expression in relation to conserved RNA motifs like OLE RNA as well as in riboswitches and operons.


Asunto(s)
Bacillus/genética , ARN no Traducido/metabolismo , Ribonucleasa P/fisiología , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , ARN no Traducido/química
12.
Biochem Biophys Res Commun ; 346(3): 1009-15, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16782065

RESUMEN

MhpE (4-hydroxy-2-ketovalerate aldolase) and MhpF [acetaldehyde dehydrogenase (acylating)] are responsible for the last two reactions in the 3-(3-hydroxyphenyl)propionate (3-HPP) catabolic pathway in Escherichia coli, which is homologous to the meta-cleavage pathway in Pseudomonas species. Here, we report that the MhpE aldolase is associated with the MhpF dehydrogenase and that MhpF is indispensable for the folding of MhpE. Moreover, our results suggest that the mhpF and mhpE genes are translationally coupled through a reinitiation mechanism. This reinitiation mechanism may function in ensuring that the expression of mhpE occurs only when MhpF is available for the formation of a complex.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Aldehído-Liasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Oxo-Ácido-Liasas/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído-Liasas/genética , Secuencia de Bases , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Estructura Molecular , Mutación/genética , Operón/genética , Oxo-Ácido-Liasas/genética , Unión Proteica , Biosíntesis de Proteínas/genética , Alineación de Secuencia
13.
J Biol Chem ; 280(41): 34667-74, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16105832

RESUMEN

M1 RNA, the catalytic subunit of Escherichia coli RNase P, is an essential ribozyme that processes the 5' leader sequence of precursor tRNAs. It is generated by the removal of 36 nucleotides from the 3' end of the primary rnpB transcript (pM1 RNA), but the biological significance of this reaction in bacterial metabolism remains obscure. In this study, we constructed and analyzed bacterial strains carrying mutations in the rne-dependent site of their rnpB genes, showing that the 3' processing of M1 RNA is essential for cell viability. Furthermore, we demonstrate that pM1 RNA can undergo not only 3' processing but also poly(A)-dependent degradation. Therefore, our results suggest that the 3' processing of M1 RNA provides a functional mechanism for the protection of its primary transcript against degradation.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Escherichia coli/enzimología , ARN Mensajero/química , Ribonucleasa P/genética , Ribonucleasa P/fisiología , Secuencia de Bases , Northern Blotting , Catálisis , Proliferación Celular , Supervivencia Celular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Genotipo , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Nucleótidos/química , Oligonucleótidos/química , Fenotipo , Plásmidos/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , ARN/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , Factores de Tiempo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA