RESUMEN
Patients with KRAS mutated colorectal cancer (CRC) represent a cohort with unmet medical needs, with limited options of FDA-approved therapies. Representing 40-45% of all CRC patients, they are considered ineligible to receive anti-EGFR monoclonal antibodies that have added a significant therapeutic benefit for KRAS wild type CRC patients. Although several mouse models of CRC have been developed during the past decade, one genetically resembling the KRAS mutated CRC is yet to be established. In this study C57 BL/6 mice with truncated adenomatous polyposis coli (APC) floxed allele was crossed with heterozygous KRAS floxed outbred mice to generate an APCf/f KRAS+/f mouse colony. In another set of breeding, APC floxed mice were crossed with CDX2-Cre-ERT2 mice and selected for APCf/f CDX2-Cre-ERT2 after the second round of inbreeding. The final model of the disease was generated by the cross of the two parental colonies and viable APC f/f KRAS +/f CDX2-Cre-ERT2 (KPC: APC) were genotyped and characterized. The model animals were tamoxifen (TAM) induced to generate tumors. Micro-positron emission tomography (PET) scan was used to detect and measure tumor volume and standard uptake value (SUV). Hematoxylin and eosin (H&E) staining was performed to establish neoplasm and immunohistochemistry (IHC) was performed to determine histological similarities with human FFPE biopsies. The MSI/microsatellite stable (MSS) status was determined. Finally, the tumors were extensively characterized at the molecular level to establish similarities with human CRC tumors. The model KPC: APC animals are conditional mutants that developed colonic tumors upon induction with tamoxifen in a dose-dependent manner. The tumors were confirmed to be malignant within four weeks of induction by H&E staining and higher radioactive [18F] fluoro-2-deoxyglucose (FDG) uptake (SUV) in micro-PET scan. Furthermore, the tumors histologically and molecularly resembled human colorectal carcinoma. Post tumor generation, the KPC: APC animals died of cachexia and rectal bleeding. Implications: This model is an excellent preclinical platform to molecularly characterize the KRAS mutated colorectal tumors and discern appropriate therapeutic strategies to improve disease management and overall survival.
Asunto(s)
Neoplasias Colorrectales/genética , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Factor de Transcripción CDX2/genética , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BLRESUMEN
For the greater part of the last century, basic science research has been limited to in vitro studies of cellular processes and ex vivo tissue examination from suitable animal models of disease. In the last three decades, however, new techniques have been developed that permit the imaging of live animals using X-rays, radiotracer emissions, magnetic resonance signals, sound waves and optical fluorescence, and bioluminescence. The objective of this review is to provide a broad overview of common animal imaging modalities, with a focus on positron emission tomography (PET), single photon emission computed tomography (SPECT), and computed tomography (CT). Important examples, benefits, and limits of microPET/SPECT/CT technologies in current use, and their central role in improving our understanding of biological behavior and in facilitating the development of treatments from bench to bedside are included.
Asunto(s)
Modelos Animales de Enfermedad , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , HumanosRESUMEN
Rhabdoid tumors (RTs) are rare, highly aggressive pediatric malignancies with poor prognosis and with no standard or effective treatment strategies. RTs are characterized by biallelic inactivation of the INI1 tumor suppressor gene. INI1 directly represses CCND1 and activates cyclin-dependent kinase (cdk) inhibitors p16(Ink4a) and p21(CIP). RTs are exquisitely dependent on cyclin D1 for genesis and survival. To facilitate translation of unique therapeutic strategies, we have used genetically engineered, Ini1(+/-) mice for therapeutic testing. We found that PET can be used to noninvasively and accurately detect primary tumors in Ini1(+/-) mice. In a PET-guided longitudinal study, we found that treating Ini1(+/-) mice bearing primary tumors with the pan-cdk inhibitor flavopiridol resulted in complete and stable regression of some tumors. Other tumors showed resistance to flavopiridol, and one of the resistant tumors overexpressed cyclin D1, more than flavopiridol-sensitive cells. The concentration of flavopiridol used was not sufficient to down-modulate the high level of cyclin D1 and failed to induce cell death in the resistant cells. Furthermore, FISH and PCR analyses indicated that there is aneuploidy and increased CCND1 copy number in resistant cells. These studies indicate that resistance to flavopiridol may be correlated to elevated cyclin D1 levels. Our studies also indicate that Ini1(+/-) mice are valuable tools for testing unique therapeutic strategies and for understanding mechanisms of drug resistance in tumors that arise owing to loss of Ini1, which is essential for developing effective treatment strategies against these aggressive tumors.
Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Ciclina D1/metabolismo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Tumor Rabdoide/tratamiento farmacológico , Animales , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Cartilla de ADN/genética , Flavonoides/uso terapéutico , Silenciador del Gen , Técnicas Histológicas , Immunoblotting , Inmunohistoquímica , Hibridación Fluorescente in Situ , Estudios Longitudinales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Piperidinas/uso terapéutico , Reacción en Cadena de la Polimerasa , Tomografía de Emisión de Positrones , Tumor Rabdoide/genética , Tumor Rabdoide/ultraestructura , Proteína SMARCB1RESUMEN
Vitamin D deficiency is a common deficiency worldwide, particularly among women of reproductive age. During pregnancy, it increases the risk of immune-related diseases in offspring later in life. However, how the body remembers exposure to an adverse environment during development is poorly understood. Herein, we explore the effects of prenatal vitamin D deficiency on immune cell proportions in offspring using vitamin D deficient mice established by dietary manipulation. We found that prenatal vitamin D deficiency alters immune cell proportions in offspring by changing the transcriptional properties of genes downstream of vitamin D receptor signaling in hematopoietic stem and progenitor cells of both the fetus and adults. Moreover, further investigations of the associations between maternal vitamin D levels and cord blood immune cell profiles from 75 healthy pregnant women and their term offspring also confirm that maternal vitamin D levels in the second trimester significantly affect immune cell proportions in the offspring. These findings imply that the differentiation properties of hematopoiesis act as long-term memories of prenatal vitamin D deficiency exposure in later life.
Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Deficiencia de Vitamina D , Vitamina D , Deficiencia de Vitamina D/inmunología , Femenino , Embarazo , Animales , Humanos , Efectos Tardíos de la Exposición Prenatal/inmunología , Ratones , Vitamina D/sangre , Sangre Fetal/citología , Adulto , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Células Madre Hematopoyéticas/metabolismo , MasculinoRESUMEN
PURPOSE: Ultrahigh dose-rate FLASH radiation therapy has emerged as a modality that promises to reduce normal tissue toxicity while maintaining tumor control. Previous studies of gastrointestinal toxicity using passively scattered FLASH proton therapy (PRT) have, however, yielded mixed results, suggesting that the requirements for gastrointestinal sparing by FLASH are an open question. Furthermore, the more clinically relevant pencil beam scanned (PBS) FLASH PRT has not yet been assessed in this context, despite differences in the spatiotemporal dose-rate distributions compared with passively scattered PRT. Here, to our knowledge, we provide the first report on the effects of PBS FLASH PRT on acute gastrointestinal injury in mice after whole abdominal irradiation. METHODS AND MATERIALS: Whole abdominal irradiation was performed on C57BL/6J mice using the entrance channel of the Bragg curve of a 250 MeV PBS proton beam at field-averaged dose rates of 0.6 Gy/s for conventional (CONV) and 80 to 100 Gy/s for FLASH PRT. A 2D strip ionization chamber array was used to measure the dose and dose rate for each mouse. Survival was assessed at 14 Gy. Intestines were harvested and processed as Swiss rolls for analysis using a novel artificial intelligence-based crypt assay to quantify crypt regeneration 4 days after irradiation. RESULTS: Survival was significantly reduced after 14 Gy FLASH PRT compared with CONV (P < .001). Our artificial intelligence-based crypt assays demonstrated no significant difference in intestinal crypts/cm or crypt depth between groups 4 days after irradiation. Furthermore, we found no significant difference in 5-ethynyl-2'-deoxyuridine+ cells/crypt or Olfactomedin4+ intestinal stem cells with FLASH relative to CONV PRT. CONCLUSIONS: Overall, our data demonstrate significantly impaired survival after abdominal PBS FLASH PRT without apparent differences in intestinal histology 4 days after irradiation.
RESUMEN
Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3(-/-)/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3(-/-)/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in â¼20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Galectinas/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Polisacáridos/metabolismo , Animales , Antígenos Transformadores de Poliomavirus/metabolismo , Neoplasias de la Mama/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Mamarias Experimentales/genética , Virus del Tumor Mamario del Ratón/metabolismo , Ratones , Ratones Endogámicos , N-Acetilglucosaminiltransferasas/deficiencia , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismoRESUMEN
The KCNQ1 α subunit and the KCNE2 ß subunit form a potassium channel in thyroid epithelial cells. Genetic disruption of KCNQ1-KCNE2 causes hypothyroidism in mice, resulting in cardiac hypertrophy, dwarfism, alopecia, and prenatal mortality. Here, we investigated the mechanistic requirement for KCNQ1-KCNE2 in thyroid hormone biosynthesis, utilizing whole-animal dynamic positron emission tomography. The KCNQ1-specific antagonist (-)-[3R,4S]-chromanol 293B (C293B) significantly impaired thyroid cell I(-) uptake, which is mediated by the Na(+)/I(-) symporter (NIS), in vivo (dSUV/dt: vehicle, 0.028 ± 0.004 min(-1); 10 mg/kg C293B, 0.009 ± 0.006 min(-1)) and in vitro (EC(50): 99 ± 10 µM C293B). Na(+)-dependent nicotinate uptake by SMCT, however, was unaffected. Kcne2 deletion did not alter the balance of free vs. thyroglobulin-bound I(-) in the thyroid (distinguished using ClO(4)(-), a competitive inhibitor of NIS), indicating that KCNQ1-KCNE2 is not required for Duox/TPO-mediated I(-) organification. However, Kcne2 deletion doubled the rate of free I(-) efflux from the thyroid following ClO(4)(-) injection, a NIS-independent process. Thus, KCNQ1-KCNE2 is necessary for adequate thyroid cell I(-) uptake, the most likely explanation being that it is prerequisite for adequate NIS activity.
Asunto(s)
Yoduros/metabolismo , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Glándula Tiroides/metabolismo , Animales , Células COS , Chlorocebus aethiops , Humanos , Hipotiroidismo/genética , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/genética , Ratones , Tomografía de Emisión de Positrones , Canales de Potasio con Entrada de Voltaje/genética , Simportadores/antagonistas & inhibidores , Simportadores/metabolismo , Glándula Tiroides/efectos de los fármacosRESUMEN
Haematopoietic stem cells (HSCs) reside in specialized microenvironments, also referred to as niches, and it has been widely believed that HSC numbers are determined by the niche size alone 1-5 . However, the vast excess of the number of niche cells over that of HSCs raises questions about this model. We initially established a mathematical model of niche availability and occupancy, which predicted that HSC numbers are restricted at both systemic and local levels. To address this question experimentally, we developed a femoral bone transplantation system, enabling us to increase the number of available HSC niches. We found that the addition of niches does not alter total HSC numbers in the body, regardless of whether the endogenous (host) niche is intact or defective, suggesting that HSC numbers are limited at the systemic level. Additionally, HSC numbers in transplanted wild-type femurs did not increase beyond physiological levels when HSCs were mobilized from defective endogenous niches to the periphery, indicating that HSC numbers are also constrained at the local level. Our study demonstrates that HSC numbers are not solely determined by niche availability, thereby rewriting the long-standing model for the regulation of HSC numbers.
RESUMEN
Vitamin D deficiency is a common deficiency worldwide, particularly among women of reproductive age. During pregnancy, it increases the risk of immune-related diseases in offspring later in life. However, exactly how the body remembers exposure to an adverse environment during development is poorly understood. Herein, we explore the effects of prenatal vitamin D deficiency on immune cell proportions in offspring using vitamin D deficient mice established by dietary manipulation. We show that prenatal vitamin D deficiency alters immune cell proportions in offspring by changing the transcriptional properties of genes downstream of vitamin D receptor signaling in hematopoietic stem and progenitor cells of both the fetus and adults. Further investigations of the associations between maternal vitamin D levels and cord blood immune cell profiles from 75 healthy pregnant women and their term babies also confirm that maternal vitamin D levels significantly affect immune cell proportions in the babies. Thus, lack of prenatal vitamin D, particularly at the time of hematopoietic stem cell migration from the liver to the bone marrow, has long-lasting effects on immune cell proportions. This highlights the importance of providing vitamin D supplementation at specific stages of pregnancy.
RESUMEN
Radionuclide irradiators (137Cs and 60Co) are commonly used in preclinical studies ranging from cancer therapy to stem cell biology. Amidst concerns of radiological terrorism, there are institutional initiatives to replace radionuclide sources with lower energy X-ray sources. As researchers transition, questions remain regarding whether the biological effects of γ-rays may be recapitulated with orthovoltage X-rays because different energies may induce divergent biological effects. We therefore sought to compare the effects of orthovoltage X-rays with 1-mm Cu or Thoraeus filtration and 137Cs γ-rays using mouse models of acute radiation syndrome. Following whole-body irradiation, 30-day overall survival was assessed, and the lethal dose to provoke 50% mortality within 30-days (LD50) was calculated by logistic regression. LD50 doses were 6.7 Gy, 7.4 Gy, and 8.1 Gy with 1-mm Cu-filtered X-rays, Thoraeus-filtered X-rays, and 137Cs γ-rays, respectively. Comparison of bone marrow, spleen, and intestinal tissue from mice irradiated with equivalent doses indicated that injury was most severe with 1-mm Cu-filtered X-rays, which resulted in the greatest reduction in bone marrow cellularity, hematopoietic stem and progenitor populations, intestinal crypts, and OLFM4+ intestinal stem cells. Thoraeus-filtered X-rays provoked an intermediate phenotype, with 137Cs showing the least damage. This study reveals a dichotomy between physical dose and biological effect as researchers transition to orthovoltage X-rays. With decreasing energy, there is increasing hematopoietic and intestinal injury, necessitating dose reduction to achieve comparable biological effects. SIGNIFICANCE: Understanding the significance of physical dose delivered using energetically different methods of radiation treatment will aid the transition from radionuclide γ-irradiators to orthovoltage X-irradiators.
Asunto(s)
Radioisótopos de Cesio , Irradiación Corporal Total , Animales , Rayos gamma , Ratones , Rayos XRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease. Tumors are poorly immunogenic and immunosuppressive, preventing T cell activation in the tumor microenvironment. Here, we present a microbial-based immunotherapeutic treatment for selective delivery of an immunogenic tetanus toxoid protein (TT856-1313) into PDAC tumor cells by attenuated Listeria monocytogenes. This treatment reactivated preexisting TT-specific memory T cells to kill infected tumor cells in mice. Treatment of KrasG12D,p53R172H, Pdx1-Cre (KPC) mice with Listeria-TT resulted in TT accumulation inside tumor cells, attraction of TT-specific memory CD4 T cells to the tumor microenvironment, and production of perforin and granzyme B in tumors. Low doses of gemcitabine (GEM) increased immune effects of Listeria-TT, turning immunologically cold into hot tumors in mice. In vivo depletion of T cells from Listeria-TT + GEM-treated mice demonstrated a CD4 T cell-mediated reduction in tumor burden. CD4 T cells from TT-vaccinated mice were able to kill TT-expressing Panc-02 tumor cells in vitro. In addition, peritumoral lymph node-like structures were observed in close contact with pancreatic tumors in KPC mice treated with Listeria-TT or Listeria-TT + GEM. These structures displayed CD4 and CD8 T cells producing perforin and granzyme B. Whereas CD4 T cells efficiently infiltrated the KPC tumors, CD8 T cells did not. Listeria-TT + GEM treatment of KPC mice with advanced PDAC reduced tumor burden by 80% and metastases by 87% after treatment and increased survival by 40% compared to nontreated mice. These results suggest that Listeria-delivered recall antigens could be an alternative to neoantigen-mediated cancer immunotherapy.
Asunto(s)
Carcinoma Ductal Pancreático , Listeria , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Muerte Celular , Modelos Animales de Enfermedad , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Toxoide Tetánico/uso terapéutico , Microambiente TumoralRESUMEN
PURPOSE: Adipocytes represent one of the most abundant constituents of the mammary gland. They are essential for mammary tumor growth and survival. Metabolically, one of the more important fat-derived factors ("adipokines") is adiponectin (APN). Serum concentrations of APN negatively correlate with body mass index and insulin resistance. To explore the association of APN with breast cancer and tumor angiogenesis, we took an in vivo approach aiming to study its role in the mouse mammary tumor virus (MMTV)-polyoma middle T antigen (PyMT) mammary tumor model. EXPERIMENTAL DESIGN: We compared the rates of tumor growth in MMTV-PyMT mice in wild-type and APN-null backgrounds. RESULTS: Histology and micro-positron emission tomography imaging show that the rate of tumor growth is significantly reduced in the absence of APN at early stages. PyMT/APN knockout mice exhibit a reduction in their angiogenic profile resulting in nutrient deprivation of the tumors and tumor-associated cell death. Surprisingly, in more advanced malignant stages of the disease, tumor growth develops more aggressively in mice lacking APN, giving rise to a larger tumor burden, an increase in the mobilization of circulating endothelial progenitor cells, and a gene expression fingerprint indicative of more aggressive tumor cells. CONCLUSIONS: These observations highlight a novel important contribution of APN in mammary tumor development and angiogenesis, indicating that APN has potent angio-mimetic properties in tumor vascularization. However, in tumors deprived of APN, this antiangiogenic stress results in an adaptive response that fuels tumor growth through mobilization of circulating endothelial progenitor cells and the development of mechanisms enabling massive cell proliferation despite a chronically hypoxic microenvironment.
Asunto(s)
Neoplasias Mamarias Experimentales/irrigación sanguínea , Neoplasias Mamarias Experimentales/genética , Neovascularización Patológica/genética , Adiponectina/sangre , Adiponectina/genética , Adiponectina/metabolismo , Animales , Antígenos Virales de Tumores/genética , Apoptosis , Western Blotting , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacocinética , Masculino , Neoplasias Mamarias Experimentales/patología , Virus del Tumor Mamario del Ratón/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , PPAR gamma/agonistas , PPAR gamma/metabolismo , Poliomavirus/genética , Tomografía de Emisión de Positrones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tiazolidinedionas/farmacología , Factores de Tiempo , Carga Tumoral/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
PURPOSE: Melanin has emerged as an attractive target for radioimmunotherapy (RIT) of melanoma, and a radiolabeled monoclonal antibody (mAb) 6D2 to melanin is currently in clinical evaluation. We investigated two approaches to improve the targeting of radiation to tumors using melanin-binding mAbs: (a) the use of an additional mAb to melanin could provide information on whether using antibodies to melanin can serve as a general approach to development of therapeutics for melanoma, and (b) as melanin targeting involves the antibody binding to extracellular melanin released from necrotic melanoma cells, we hypothesized that the administration of a chemotherapeutic agent followed by RIT would facilitate the delivery of radiation to the tumors due to the increased presence of free melanin. EXPERIMENTAL DESIGN: We evaluated the therapeutic efficacy of two melanin-binding IgM mAbs labeled with (188)Re (6D2 and 11B11). We compared the efficacy of RIT with (188)Re-6D2 to chemotherapy with dacarbazine (DTIC) and to combined chemotherapy and RIT in human metastatic melanoma-bearing nude mice. RESULTS: Therapeutic efficacy of (188)Re-labeled 6D2 and 11B11 was comparable despite differences in their affinity and binding site numbers. Comparison of chemotherapy with DTIC and RIT revealed that RIT was more effective in slowing tumor growth in mice. Administration of DTIC followed by RIT was more effective than either modality alone. CONCLUSIONS: These results provide encouragement for the development of RIT for melanoma with melanin-binding mAbs and suggest that combining chemotherapy and RIT may be a promising approach for the treatment of metastatic melanoma.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Alquilantes/uso terapéutico , Dacarbazina/uso terapéutico , Melaninas/inmunología , Melanoma/terapia , Radioinmunoterapia , Neoplasias Cutáneas/terapia , Animales , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Terapia Combinada , Femenino , Humanos , Melaninas/análisis , Melanoma/tratamiento farmacológico , Melanoma/radioterapia , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Compuestos Organometálicos/inmunología , Compuestos Organometálicos/uso terapéutico , Tomografía de Emisión de Positrones , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/radioterapiaRESUMEN
Radiation therapy (RT) has traditionally not been widely used in the management of hepatic malignancies for fear of toxicity in the form of radiation-induced liver disease (RILD). Pre-clinical hepatic irradiation models can provide clinicians with better understanding of the radiation tolerance of the liver, which in turn may lead to the development of more effective cancer treatments. Previous models of hepatic irradiation are limited by either invasive laparotomy procedures, or the need to irradiate the whole or large parts of the liver using external skin markers. In the setting of modern-day radiation oncology, a truly translational animal model would require the ability to deliver RT to specific parts of the liver, through non-invasive image guidance methods. To this end, we developed a targeted hepatic irradiation model on the Small Animal Radiation Research Platform (SARRP) using contrast-enhanced cone-beam computed tomography image guidance. Using this model, we showed evidence of the early development of region-specific RILD through functional single photon emission computed tomography (SPECT) imaging.
RESUMEN
Our laboratory has developed a novel delivery platform using an attenuated non-toxic and non-pathogenic bacterium Listeria monocytogenes that infects tumor cells and selectively survives and multiplies in metastases and primary tumors with help of myeloid-derived suppressor cells (MDSC) and immune suppression in the tumor microenvironment (TME). 32P was efficiently incorporated into the Listeria bacteria by starvation of the bacteria in saline, and then cultured in phosphorus-free medium complemented with 32P as a nutrient. Listeria-32P kills tumor cells through both 32P-induced ionizing radiation and Listeria-induced reactive oxygen species (ROS). The levels of 32P and Listeria were studied in various normal and tumor tissues, at sequential time points after injection of mice with pancreatic cancer (syngeneic model Panc-02). We found that 32P and Listeria predominantly accumulated in tumors and metastases, with their highest accumulation 4 hrs (32P) and 3 days (Listeria) after injection. Listeria also penetrated the transgenic KPC (conditionally express endogenous Kras-G12D and p53-R172H mutant alleles) pancreatic tumors and metastases. This is remarkable since KPC tumors, like human tumors, exhibit a stromal barrier, which prevents most drugs from penetrating the pancreatic tumors. Therapeutic treatment with Listeria -32P resulted in a strong reduction of the growth of pancreatic cancer at early and late stages in Panc-02 and KPC mice. These results highlight the power of Listeria as new delivery platform of anticancer agents to the TME. Not only were therapeutic levels of radioactive Listeria reached in tumors and metastases but the selective delivery also led to minimal side effects.
Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Listeria monocytogenes , Neoplasias Pancreáticas/patología , Radioisótopos de Fósforo/administración & dosificación , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Microscopía ConfocalRESUMEN
The scientific study of living animals may be dated to Aristotle's original dissections, but modern animal studies are perhaps a century in the making, and advanced animal imaging has emerged only during the past few decades. In vivo imaging now occupies a growing role in the scientific research paradigm. Imaging of small animals has been particularly useful to help understand human molecular biology and pathophysiology using rodents, especially using genetically engineered mice (GEM) with spontaneous diseases that closely mimic human diseases. Specific examples of GEM models of veterinary diseases exist, but in general, GEM for veterinary research has lagged behind human research applications. However, the development of spontaneous disease models from GEM may also hold potential for veterinary research. The imaging techniques most widely used in small-animal research are CT, PET, single-photon emission CT, MRI, and optical fluorescent and luminescent imaging.
Asunto(s)
Tamaño Corporal , Diagnóstico por Imagen/veterinaria , Investigación/instrumentación , Crianza de Animales Domésticos , Animales , Organismos Acuáticos , Diagnóstico por Imagen/instrumentación , Modelos Animales de Enfermedad , Humanos , Trazadores RadiactivosRESUMEN
BACKGROUND: Trypanosoma cruzi, the causative agent of Chagas disease, has high affinity for lipoproteins and adipose tissue. Infection results in myocarditis, fat loss and alterations in lipid homeostasis. This study was aimed at analyzing the effect of high fat diet (HFD) on regulating acute T. cruzi infection-induced myocarditis and to evaluate the effect of HFD on lipid metabolism in adipose tissue and heart during acute T. cruzi infection. METHODOLOGY/PRINCIPAL FINDINGS: CD1 mice were infected with T. cruzi (Brazil strain) and fed either a regular control diet (RD) or HFD for 35 days following infection. Serum lipid profile, tissue cholesterol levels, blood parasitemia, and tissue parasite load were analyzed to evaluate the effect of diet on infection. MicroPET and MRI analysis were performed to examine the morphological and functional status of the heart during acute infection. qPCR and immunoblot analysis were carried out to analyze the effect of diet on the genes involved in the host lipid metabolism during infection. Oil red O staining of the adipose tissue demonstrated reduced lipolysis in HFD compared to RD fed mice. HFD reduced mortality, parasitemia and cardiac parasite load, but increased parasite load in adipocytes. HFD decreased lipolysis during acute infection. Both qPCR and protein analysis demonstrated alterations in lipid metabolic pathways in adipose tissue and heart in RD fed mice, which were further modulated by HFD. Both microPET and MRI analyses demonstrated changes in infected RD murine hearts which were ameliorated by HFD. CONCLUSION/SIGNIFICANCE: These studies indicate that Chagasic cardiomyopathy is associated with a cardiac lipidpathy and that both cardiac lipotoxicity and adipose tissue play a role in the pathogenesis of Chagas disease. HFD protected mice from T. cruzi infection-induced myocardial damage most likely due to the effects of HFD on both adipogenesis and T. cruzi infection-induced cardiac lipidopathy.
Asunto(s)
Cardiomiopatía Chagásica/metabolismo , Miocarditis/metabolismo , Adipogénesis , Tejido Adiposo Blanco/metabolismo , Animales , Brasil , Cardiomiopatía Chagásica/parasitología , Cardiomiopatía Chagásica/patología , LDL-Colesterol/sangre , Dieta Alta en Grasa , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C3H , Miocarditis/parasitología , Miocarditis/patología , Miocardio/metabolismo , Miocardio/patologíaRESUMEN
BACKGROUND: Novel approaches to treatment of pancreatic cancer (PCa) are urgently needed. A chimeric monoclonal antibody (mAb) chTNT3 binds to single-strand DNA (ssDNA) and RNA released from the non-viable cells in fast growing tumors. Here the authors investigated whether radioimmunotherapy (RIT) using chTNT3 mAb radiolabeled with 213-Bismuth ((213)Bi) could be effective in treatment of experimental PCa. METHODS: Two human PCa cell lines, Panc1 and MiaPaCa-2, were used for in vitro experiments. The xenografts in mice were established using MiaPaCa-2 cells. Therapy compared (213)Bi-chTNT3 (700 µCi) to gemcitabine or cisplatin, untreated controls and 'cold' chTNT3. RESULTS: RIT abrogated the tumors growth while tumors in control groups grew aggressively. Chemotherapy was less effective than RIT and toxic to mice while RIT did not have any side effects. CONCLUSIONS: RIT with (213)Bi-chTNT3 was safe and effective in the treatment of experimental PCa in comparison with chemotherapy. This makes α-RIT targeting ssDNA a promising modality for further development.
Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Bismuto/administración & dosificación , Neoplasias Pancreáticas/terapia , Radioinmunoterapia/métodos , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/efectos adversos , Cisplatino/uso terapéutico , ADN/metabolismo , Desoxicitidina/efectos adversos , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Pancreáticas/patología , Radioinmunoterapia/efectos adversos , Radioisótopos/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto , GemcitabinaRESUMEN
BACKGROUND: Chagas disease, resulting from infection with the parasite Trypanosoma cruzi (T. cruzi), is a major cause of cardiomyopathy in Latin America. Drug therapy for acute and chronic disease is limited. Stem cell therapy with bone marrow mesenchymal cells (MSCs) has emerged as a novel therapeutic option for cell death-related heart diseases, but efficacy of MSC has not been tested in Chagas disease. METHODS AND RESULTS: We now report the use of cell-tracking strategies with nanoparticle labeled MSC to investigate migration of transplanted MSC in a murine model of Chagas disease, and correlate MSC biodistribution with glucose metabolism and morphology of heart in chagasic mice by small animal positron emission tomography (microPET). Mice were infected intraperitoneally with trypomastigotes of the Brazil strain of T. cruzi and treated by tail vein injection with MSC one month after infection. MSCs were labeled with near infrared fluorescent nanoparticles and tracked by an in vivo imaging system (IVIS). Our IVIS results two days after transplant revealed that a small, but significant, number of cells migrated to chagasic hearts when compared with control animals, whereas the vast majority of labeled MSC migrated to liver, lungs and spleen. Additionally, the microPET technique demonstrated that therapy with MSC reduced right ventricular dilation, a phenotype of the chagasic mouse model. CONCLUSIONS: We conclude that the beneficial effects of MSC therapy in chagasic mice arise from an indirect action of the cells in the heart rather than a direct action due to incorporation of large numbers of transplanted MSC into working myocardium.
Asunto(s)
Trasplante de Médula Ósea/métodos , Cardiomiopatía Chagásica/terapia , Animales , Disponibilidad Biológica , Células de la Médula Ósea/citología , Cardiomiopatía Chagásica/patología , Modelos Animales de Enfermedad , Hígado/patología , Pulmón/patología , Masculino , Ratones , Miocardio/patología , Bazo/patología , Coloración y EtiquetadoRESUMEN
BACKGROUND: Pasireotide (SOM230), a long-acting somatostatin analogue (LAR), has improved agonist activity at somatostatin receptors. We tested the effect of SOM230 on insulin secretion, serum glucose concentrations, tumor growth, and survival using an MEN1 transgenic mouse model. METHODS: Eight 12-month-old conditional Men1 knockout mice with insulinoma were assessed. The treatment (n = 4) and control groups (n = 4) received monthly subcutaneous injections of SOM230 or PBS. Serum insulin and glucose levels were determined by enzyme-linked immunosorbent assay and enzymatic colorimetric assay, respectively. Tumor activity, growth, and apoptosis were determined by microPET/CT scan and histologic analysis. RESULTS: On day 7, there was a decrease in serum insulin levels from 1.06 ± 0.28 µg/L to 0.37 ± 0.17 µg/L (P = .0128) and a significant increase in serum glucose from 4.2 ± 0.45 mmol/L to 7.12 ± 1.06 mmol/L (P = .0075) in the treatment group but no change in the control group. Tumor size was less in the treatment group (2,098 ± 388 µm(2)) compared with the control group (7,067 ± 955 µm(2); P = .0024). Furthermore, apoptosis was increased in the treatment group (6.9 ± 1.23%) compared with the control group (0.29 ± 0.103%; P = .002). CONCLUSION: SOM230 demonstrates antisecretory, antiproliferative, and proapoptotic activity in our MEN1 model of insulinoma. Further studies of the effects of SOM230 in PNET patients with MEN1 mutations are warranted.