Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 139(4): 791-801, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19914171

RESUMEN

Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and later for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Organogénesis , Páncreas/embriología , Animales , Polaridad Celular , Células Epiteliales/metabolismo , Laminina/metabolismo , Ratones , Ratones Noqueados , Páncreas/citología , Páncreas/metabolismo , Páncreas Exocrino/citología , Páncreas Exocrino/embriología , Páncreas Exocrino/metabolismo , Células Madre/metabolismo , Quinasas Asociadas a rho/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(19): 7356-61, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22529374

RESUMEN

During early pancreatic development, Notch signaling represses differentiation of endocrine cells and promotes proliferation of Nkx6-1(+)Ptf1a(+) multipotent progenitor cells (MPCs). Later, antagonistic interactions between Nkx6 transcription factors and Ptf1a function to segregate MPCs into distal Nkx6-1(-)Ptf1a(+) acinar progenitors and proximal Nkx6-1(+)Ptf1a(-) duct and ß-cell progenitors. Distal cells are initially multipotent, but evolve into unipotent, acinar cell progenitors. Conversely, proximal cells are bipotent and give rise to duct cells and late-born endocrine cells, including the insulin producing ß-cells. However, signals that regulate proximodistal (P-D) patterning and thus formation of ß-cell progenitors are unknown. Here we show that Mind bomb 1 (Mib1) is required for correct P-D patterning of the developing pancreas and ß-cell formation. We found that endoderm-specific inactivation of Mib1 caused a loss of Nkx6-1(+)Ptf1a(-) and Hnf1ß(+) cells and a corresponding loss of Neurog3(+) endocrine progenitors and ß-cells. An accompanying increase in Nkx6-1(-)Ptf1a(+) and amylase(+) cells, occupying the proximal domain, suggests that proximal cells adopt a distal fate in the absence of Mib1 activity. Impeding Notch-mediated transcriptional activation by conditional expression of dominant negative Mastermind-like 1 (Maml1) resulted in a similarly distorted P-D patterning and suppressed ß-cell formation, as did conditional inactivation of the Notch target gene Hes1. Our results reveal iterative use of Notch in pancreatic development to ensure correct P-D patterning and adequate ß-cell formation.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Secretoras de Insulina/metabolismo , Páncreas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 1-beta del Hepatocito/genética , Factor Nuclear 1-beta del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Páncreas/citología , Páncreas/embriología , Receptores Notch/genética , Receptores Notch/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética
3.
Dev Biol ; 376(1): 1-12, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23370147

RESUMEN

Ngn3 is recognized as a regulator of pancreatic endocrine formation, and Notch signaling as an important negative regulator Ngn3 gene expression. By conditionally controlling expression of Ngn3 in the pancreas, we find that these two signaling components are dynamically linked. This connection involves transcriptional repression as previously shown, but also incorporates a novel post-translational mechanism. In addition to its ability to promote endocrine fate, we provide evidence of a competing ability of Ngn3 in the patterning of multipotent progenitor cells in turn controlling the formation of ducts. On one hand, Ngn3 cell-intrinsically activates endocrine target genes; on the other, Ngn3 cell-extrinsically promotes lateral signaling via the Dll1>Notch>Hes1 pathway which substantially limits its ability to sustain endocrine formation. Prior to endocrine commitment, the Ngn3-mediated activation of the Notch>Hes1 pathway impacts formation of the trunk domain in the pancreas causing multipotent progenitors to lose acinar, while gaining endocrine and ductal, competence. The subsequent selection of fate from such bipotential progenitors is then governed by lateral inhibition, where Notch>Hes1-mediated Ngn3 protein destabilization serves to limit endocrine differentiation by reducing cellular levels of Ngn3. This system thus allows for rapid dynamic changes between opposing bHLH proteins in cells approaching a terminal differentiation event. Inhibition of Notch signaling leads to Ngn3 protein stabilization in the normal mouse pancreas explants. We conclude that the mutually exclusive expression pattern of Ngn3/Hes1 proteins in the mammalian pancreas is partially controlled through Notch-mediated post-translational regulation and we demonstrate that the formation of insulin-producing beta-cells can be significantly enhanced upon induction of a pro-endocrine drive combined with the inhibition of Notch processing.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Morfogénesis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Páncreas/embriología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Dipéptidos , Técnicas Histológicas , Inmunohistoquímica , Ratones , Páncreas/metabolismo , Estabilidad Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Dev Biol ; 349(1): 20-34, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20883684

RESUMEN

Spatio-temporal regulation of the balance between cell renewal and cell differentiation is of vital importance for embryonic development and adult homeostasis. Fibroblast growth factor signaling relayed from the mesenchyme to the epithelium is necessary for progenitor maintenance during organogenesis of most endoderm-derived organs, but it is still ambiguous whether the signal is exclusively mitogenic. Furthermore, the downstream mechanisms are largely unknown. In order to elucidate these questions we performed a complementary analysis of fibroblast growth factor 10 (Fgf10), gain-of-function and loss-of-function in the embryonic mouse duodenum, where the progenitor niche is clearly defined and differentiation proceeds in a spatially organized manner. In agreement with a role in progenitor maintenance, FGF10 is expressed in the duodenal mesenchyme during early development while the cognate receptor FGFR2b is expressed in the epithelial progenitor niche. Fgf10 gain-of-function in the epithelium leads to spatial expansion of the progenitor niche and repression of cell differentiation, while loss-of-function results in premature cell differentiation and subsequent epithelial hypoplasia. We conclude that FGF10 mediated mesenchymal-to-epithelial signaling maintains the progenitor niche in the embryonic duodenum primarily by repressing cell differentiation, rather than through mitogenic signaling. Furthermore, we demonstrate that FGF10-signaling targets include ETS-family transcription factors, which have previously been shown to regulate epithelial maturation and tumor progression.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citología , Transducción de Señal , Animales , Proliferación Celular , Factor 10 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Intestinos/embriología , Ratones , Ratones Transgénicos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética
5.
BMC Dev Biol ; 8: 2, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-18186922

RESUMEN

BACKGROUND: Interaction with the surrounding mesenchyme is necessary for development of endodermal organs, and Fibroblast growth factors have recently emerged as mesenchymal-expressed morphogens that direct endodermal morphogenesis. The fibroblast growth factor 10 (Fgf10) null mouse is characterized by the absence of lung bud development. Previous studies have shown that this requirement for Fgf10 is due in part to its role as a chemotactic factor during branching morphogenesis. In other endodermal organs Fgf10 also plays a role in regulating differentiation. RESULTS: Through gain-of-function analysis, we here find that FGF10 inhibits differentiation of the lung epithelium and promotes distalization of the embryonic lung. Ectopic expression of FGF10 in the lung epithelium caused impaired lung development and perinatal lethality in a transgenic mouse model. Lung lobes were enlarged due to increased interlobular distance and hyperplasia of the airway epithelium. Differentiation of bronchial and alveolar cell lineages was inhibited. The transgenic epithelium consisted predominantly of proliferating progenitor-like cells expressing Pro-surfactant protein C, TTF1, PEA3 and Clusterin similarly to immature distal tip cells. Strikingly, goblet cells developed within this arrested epithelium leading to goblet cell hyperplasia. CONCLUSION: We conclude that FGF10 inhibits terminal differentiation in the embryonic lung and maintains the distal epithelium, and that excessive levels of FGF10 leads to metaplastic differentiation of goblet cells similar to that seen in chronic inflammatory diseases.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/biosíntesis , Células Caliciformes/patología , Pulmón/embriología , Animales , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/biosíntesis , Diferenciación Celular , Transdiferenciación Celular , Embrión de Mamíferos , Células Madre Embrionarias/patología , Células Epiteliales/patología , Células Caliciformes/metabolismo , Proteínas de Homeodominio/biosíntesis , Hiperplasia , Pulmón/metabolismo , Pulmón/patología , Metaplasia , Ratones , Ratones Transgénicos , Morfogénesis , Músculo Liso/embriología , Músculo Liso/patología , Alveolos Pulmonares/embriología , Alveolos Pulmonares/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transactivadores/biosíntesis , beta Catenina/biosíntesis
6.
J Clin Invest ; 127(12): 4449-4461, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29106384

RESUMEN

Nonalcoholic steatohepatitis (NASH) is characterized by progressive liver injury, inflammation, and fibrosis; however, the mechanisms that govern the transition from hepatic steatosis, which is relatively benign, to NASH remain poorly defined. Neuregulin 4 (Nrg4) is an adipose tissue-enriched endocrine factor that elicits beneficial metabolic effects in obesity. Here, we show that Nrg4 is a key component of an endocrine checkpoint that preserves hepatocyte health and counters diet-induced NASH in mice. Nrg4 deficiency accelerated liver injury, fibrosis, inflammation, and cell death in a mouse model of NASH. In contrast, transgenic expression of Nrg4 in adipose tissue alleviated diet-induced NASH. Nrg4 attenuated hepatocyte death in a cell-autonomous manner by blocking ubiquitination and proteasomal degradation of c-FLIPL, a negative regulator of cell death. Adeno-associated virus-mediated (AAV-mediated) rescue of hepatic c-FLIPL expression in Nrg4-deficent mice functionally restored the brake for steatosis to NASH transition. Thus, hepatic Nrg4 signaling serves as an endocrine checkpoint for steatosis-to-NASH progression by activating a cytoprotective pathway to counter stress-induced liver injury.


Asunto(s)
Tejido Adiposo/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Neurregulinas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal , Tejido Adiposo/patología , Animales , Muerte Celular , Modelos Animales de Enfermedad , Hepatocitos/patología , Hígado/patología , Ratones , Neurregulinas/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología
7.
Mech Dev ; 127(3-4): 220-34, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19969077

RESUMEN

Fgf10 is a critical component of mesenchymal-to-epithelial signaling during endodermal development. In the Fgf10 null pancreas, the embryonic progenitor population fails to expand, while ectopic Fgf10 expression forces progenitor arrest and organ hyperplasia. Using a conditional Fgf10 gain-of-function model, we observed that the timing of Fgf10 expression affected the cellular competence of the arrested pancreatic progenitors. We present evidence that the Fgf10-arrested progenitor state is reversible and that terminal differentiation resumes upon cessation of Fgf10 production. However, competence towards the individual pancreatic cell lineages depended upon the gestational time of when Fgf10 expression was attenuated. This revealed a competence window of endocrine and ductal cell formation that coincided with the pancreatic secondary transition between E13.5 and E15.5. We demonstrate that maintaining the Fgf10-arrested state during this period leads to permanent loss of competence for the endocrine and ductal cell fates. However, competence of the arrested progenitors towards the exocrine cell fate was retained throughout the secondary transition. Sustained Fgf10 expression caused irreversible loss of Ngn3 expression, which may underlie the loss of endocrine competence. Maintenance of exocrine competence may be attributable to continuous Ptf1a expression in the Fgf10-arrested progenitors. This may explain the rapid induction of Bhlhb8, a normally distalized cell intrinsic marker, following loss of ectopic Fgf10 expression. We conclude that the window for endocrine and ductal cell competence ceases during the secondary transition in pancreatic development.


Asunto(s)
Diferenciación Celular/fisiología , Factor 10 de Crecimiento de Fibroblastos/fisiología , Páncreas/citología , Animales , Linaje de la Célula , Doxiciclina/farmacología , Factor 10 de Crecimiento de Fibroblastos/biosíntesis , Factor 10 de Crecimiento de Fibroblastos/genética , Ratones , Ratones Transgénicos
8.
Dev Biol ; 303(1): 295-310, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17196193

RESUMEN

Maintenance of progenitor cell properties in development is required for proper organogenesis of most organs, including those derived from the endoderm. FGF10 has been shown to play a role in both lung and pancreatic development. Here we find that FGF10 signaling controls stomach progenitor maintenance, morphogenesis and cellular differentiation. Through a characterization of the initiation of terminal differentiation of the three major gastric regions in the mouse, forestomach, corpus and antrum, we first describe the existence of a "secondary transition" event occurring in mouse stomach between E15.5 and E16.5. This includes the formation of terminally differentiated squamous cells, parietal, chief and gastric endocrine cells from a pre-patterned gastric progenitor epithelium. Expression analysis of both FGF and Notch signaling components suggested a role of these networks in such progenitors, which was tested through ectopically expressing FGF10 in the developing posterior stomach. These data provide evidence that gastric gland specification and progenitor cell maintenance is controlled by FGF10. The glandular proliferative niche was disrupted in pPDX-FGF10(FLAG) mice leading to aberrant gland formation, and endocrine and parietal cell differentiation was attenuated. These effects were paralleled by changes in Hes1, Shh and Wnt6 expression, suggesting that FGF10 acts in concert with multiple morphogenetic signaling systems during gastric development.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Organogénesis/fisiología , Transducción de Señal/fisiología , Estómago/embriología , Animales , Pesos y Medidas Corporales , Diferenciación Celular/fisiología , Perfilación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Inmunohistoquímica , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/fisiología , Proteínas Wnt/metabolismo
9.
Dev Dyn ; 236(11): 3100-10, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17907201

RESUMEN

ETS-family factors play major roles in development and cancer, notably as critical targets for extra-cellular signaling pathways, including MAPK-signaling. Given the presently limited knowledge on the role of ETS-factors in pancreatic development, we here sought to characterize all 26 individual members of the ETS-family in relation to pancreatic development using a combination of genomics, RT-PCR, and histological techniques. This analysis uncovers 22 ETS family genes displaying select spatial and temporal expression patterns in the developing pancreas. Highly specific expression of ETS-family components is observed in pancreatic progenitor cells or the associated embryonic mesenchyme. Other members are linked to the differentiation of more mature pancreatic cells, including exocrine and endocrine cell types. We find that two members of the Etv subfamily, Etv4 and Etv5, are expressed in cells proximal to pancreatic mesenchyme, and, furthermore, induced in FGF10-arrested pancreatic progenitors suggesting that these factors mediate mesenchymal-to-epithelial signaling.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mesodermo/embriología , Páncreas/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Humanos , Hibridación in Situ , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Páncreas/citología , Páncreas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
10.
Biochem Biophys Res Commun ; 303(1): 146-52, 2003 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-12646179

RESUMEN

The Drosophila Genome Project website (www.flybase.org) contains the sequence of an annotated gene (CG6111) expected to code for a G protein-coupled receptor. We have cloned this receptor and found that its gene was not correctly predicted, because an annotated neighbouring gene (CG14547) was also part of the receptor gene. DNA corresponding to the corrected gene CG6111 was expressed in Chinese hamster ovary cells, where it was found to code for a receptor that could be activated by low concentrations of crustacean cardioactive peptide, which is a neuropeptide also known to occur in Drosophila and other insects (EC(50), 5.4 x 10(-10)M). Other known Drosophila neuropeptides, such as adipokinetic hormone, did not activate the receptor. The receptor is expressed in all developmental stages from Drosophila, but only very weakly in larvae. In adult flies, the receptor is mainly expressed in the head. Furthermore, we identified a gene sequence in the genomic database from the malaria mosquito Anopheles gambiae that very likely codes for a crustacean cardioactive peptide receptor.


Asunto(s)
Drosophila/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Animales , Anopheles/genética , Secuencia de Bases , Northern Blotting , Células CHO , Cricetinae , ADN/metabolismo , ADN Complementario/metabolismo , Bases de Datos como Asunto , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Distribución Tisular , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA