Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 158(2): 412-421, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036635

RESUMEN

Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the predicted BGCs revealed large gene cluster families, the vast majority uncharacterized. We experimentally characterized the most prominent family, consisting of two subfamilies of hundreds of BGCs distributed throughout the Proteobacteria; their products are aryl polyenes, lipids with an aryl head group conjugated to a polyene tail. We identified a distant relationship to a third subfamily of aryl polyene BGCs, and together the three subfamilies represent the largest known family of biosynthetic gene clusters, with more than 1,000 members. Although these clusters are widely divergent in sequence, their small molecule products are remarkably conserved, indicating for the first time the important roles these compounds play in Gram-negative cell biology.


Asunto(s)
Algoritmos , Bacterias/genética , Bacterias/metabolismo , Bacterias/química , Bacterias/clasificación , Mutación , Estrés Oxidativo , Filogenia , Metabolismo Secundario
2.
Nature ; 464(7287): 367-73, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20237561

RESUMEN

Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.


Asunto(s)
Cromosomas Fúngicos/genética , Fusarium/genética , Fusarium/patogenicidad , Genoma Fúngico/genética , Genómica , Evolución Molecular , Fusarium/clasificación , Interacciones Huésped-Parásitos/genética , Familia de Multigenes/genética , Fenotipo , Filogenia , Proteoma/genética , Análisis de Secuencia de ADN , Sintenía/genética , Virulencia/genética
3.
PLoS Genet ; 5(7): e1000549, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19578406

RESUMEN

Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called "zygomycetes," R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99-880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin-proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14alpha-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.


Asunto(s)
Duplicación de Gen , Genoma Fúngico , Genómica , Mucormicosis/microbiología , Rhizopus/genética , Elementos Transponibles de ADN , Proteínas Fúngicas/genética , Hongos/clasificación , Hongos/genética , Humanos , Filogenia , Rhizopus/química , Rhizopus/clasificación , Rhizopus/aislamiento & purificación
4.
PLoS Pathog ; 5(5): e1000459, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19478886

RESUMEN

Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria.


Asunto(s)
Hibridación Genómica Comparativa , Francisella tularensis/genética , Francisella tularensis/patogenicidad , Secuencia de Bases , Francisella tularensis/aislamiento & purificación , Genes Bacterianos/genética , Filogenia , Recombinación Genética , Virulencia/genética
5.
Nucleic Acids Res ; 37(Database issue): D499-508, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18835847

RESUMEN

The effective control of tuberculosis (TB) has been thwarted by the need for prolonged, complex and potentially toxic drug regimens, by reliance on an inefficient vaccine and by the absence of biomarkers of clinical status. The promise of the genomics era for TB control is substantial, but has been hindered by the lack of a central repository that collects and integrates genomic and experimental data about this organism in a way that can be readily accessed and analyzed. The Tuberculosis Database (TBDB) is an integrated database providing access to TB genomic data and resources, relevant to the discovery and development of TB drugs, vaccines and biomarkers. The current release of TBDB houses genome sequence data and annotations for 28 different Mycobacterium tuberculosis strains and related bacteria. TBDB stores pre- and post-publication gene-expression data from M. tuberculosis and its close relatives. TBDB currently hosts data for nearly 1500 public tuberculosis microarrays and 260 arrays for Streptomyces. In addition, TBDB provides access to a suite of comparative genomics and microarray analysis software. By bringing together M. tuberculosis genome annotation and gene-expression data with a suite of analysis tools, TBDB (http://www.tbdb.org/) provides a unique discovery platform for TB research.


Asunto(s)
Bases de Datos Genéticas , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Investigación Biomédica , Gráficos por Computador , Expresión Génica , Genoma Bacteriano , Genómica , Humanos , Mycobacterium tuberculosis/metabolismo , Integración de Sistemas , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico
6.
Proc Natl Acad Sci U S A ; 105(8): 3100-5, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18287045

RESUMEN

One of the hallmarks of the Gram-negative bacterium Pseudomonas aeruginosa is its ability to thrive in diverse environments that includes humans with a variety of debilitating diseases or immune deficiencies. Here we report the complete sequence and comparative analysis of the genomes of two representative P. aeruginosa strains isolated from cystic fibrosis (CF) patients whose genetic disorder predisposes them to infections by this pathogen. The comparison of the genomes of the two CF strains with those of other P. aeruginosa presents a picture of a mosaic genome, consisting of a conserved core component, interrupted in each strain by combinations of specific blocks of genes. These strain-specific segments of the genome are found in limited chromosomal locations, referred to as regions of genomic plasticity. The ability of P. aeruginosa to shape its genomic composition to favor survival in the widest range of environmental reservoirs, with corresponding enhancement of its metabolic capacity is supported by the identification of a genomic island in one of the sequenced CF isolates, encoding enzymes capable of degrading terpenoids produced by trees. This work suggests that niche adaptation is a major evolutionary force influencing the composition of bacterial genomes. Unlike genome reduction seen in host-adapted bacterial pathogens, the genetic capacity of P. aeruginosa is determined by the ability of individual strains to acquire or discard genomic segments, giving rise to strains with customized genomic repertoires. Consequently, this organism can survive in a wide range of environmental reservoirs that can serve as sources of the infecting organisms.


Asunto(s)
Fibrosis Quística/complicaciones , Ambiente , Evolución Molecular , Genoma Bacteriano , Filogenia , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Secuencia de Bases , Genómica , Humanos , Datos de Secuencia Molecular , Infecciones por Pseudomonas/etiología , Alineación de Secuencia , Análisis de Secuencia de ADN
7.
Hepatology ; 48(6): 1769-78, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19026009

RESUMEN

UNLABELLED: Resistance mutations to hepatitis C virus (HCV) nonstructural protein 3 (NS3) protease inhibitors in <1% of the viral quasispecies may still allow >1000-fold viral load reductions upon treatment, consistent with their reported reduced replicative fitness in vitro. Recently, however, an R155K protease mutation was reported as the dominant quasispecies in a treatment-naïve individual, raising concerns about possible full drug resistance. To investigate the prevalence of dominant resistance mutations against specifically targeted antiviral therapy for HCV (STAT-C) in the population, we analyzed HCV genome sequences from 507 treatment-naïve patients infected with HCV genotype 1 from the United States, Germany, and Switzerland. Phylogenetic sequence analysis and viral load data were used to identify the possible spread of replication-competent, drug-resistant viral strains in the population and to infer the consequences of these mutations upon viral replication in vivo. Mutations described to confer resistance to the protease inhibitors Telaprevir, BILN2061, ITMN-191, SCH6 and Boceprevir; the NS5B polymerase inhibitor AG-021541; and to the NS4A antagonist ACH-806 were observed mostly as sporadic, unrelated cases, at frequencies between 0.3% and 2.8% in the population, including two patients with possible multidrug resistance. Collectively, however, 8.6% of the patients infected with genotype 1a and 1.4% of those infected with genotype 1b carried at least one dominant resistance mutation. Viral loads were high in the majority of these patients, suggesting that drug-resistant viral strains might achieve replication levels comparable to nonresistant viruses in vivo. CONCLUSION: Naturally occurring dominant STAT-C resistance mutations are common in treatment-naïve patients infected with HCV genotype 1. Their influence on treatment outcome should further be characterized to evaluate possible benefits of drug resistance testing for individual tailoring of drug combinations when treatment options are limited due to previous nonresponse to peginterferon and ribavirin.


Asunto(s)
Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Hepacivirus/enzimología , Hepatitis C/tratamiento farmacológico , Mutación/genética , Inhibidores de Proteasas/uso terapéutico , Antivirales/farmacología , Carbamatos/farmacología , Carbamatos/uso terapéutico , Estudios de Cohortes , Femenino , Pruebas Genéticas , Hepacivirus/genética , Hepacivirus/patogenicidad , Hepatitis C/sangre , Hepatitis C/virología , Humanos , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/uso terapéutico , Masculino , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Feniltiourea/análogos & derivados , Feniltiourea/farmacología , Feniltiourea/uso terapéutico , Filogenia , Prolina/análogos & derivados , Prolina/farmacología , Prolina/uso terapéutico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Tiazoles/farmacología , Tiazoles/uso terapéutico , Carga Viral , Proteínas no Estructurales Virales/antagonistas & inhibidores
8.
PLoS One ; 7(2): e26038, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22347359

RESUMEN

Mycobacterium tuberculosis, the causative agent of most human tuberculosis, infects one third of the world's population and kills an estimated 1.7 million people a year. With the world-wide emergence of drug resistance, and the finding of more functional genetic diversity than previously expected, there is a renewed interest in understanding the forces driving genome evolution of this important pathogen. Genetic diversity in M. tuberculosis is dominated by single nucleotide polymorphisms and small scale gene deletion, with little or no evidence for large scale genome rearrangements seen in other bacteria. Recently, a single report described a large scale genome duplication that was suggested to be specific to the Beijing lineage. We report here multiple independent large-scale duplications of the same genomic region of M. tuberculosis detected through whole-genome sequencing. The duplications occur in strains belonging to both M. tuberculosis lineage 2 and 4, and are thus not limited to Beijing strains. The duplications occur in both drug-resistant and drug susceptible strains. The duplicated regions also have substantially different boundaries in different strains, indicating different originating duplication events. We further identify a smaller segmental duplication of a different genomic region of a lab strain of H37Rv. The presence of multiple independent duplications of the same genomic region suggests either instability in this region, a selective advantage conferred by the duplication, or both. The identified duplications suggest that large-scale gene duplication may be more common in M. tuberculosis than previously considered.


Asunto(s)
Duplicación de Gen , Variación Genética , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Farmacorresistencia Bacteriana
9.
Tuberculosis (Edinb) ; 90(4): 225-35, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20488753

RESUMEN

The Tuberculosis Database (TBDB) is an online database providing integrated access to genome sequence, expression data and literature curation for TB. TBDB currently houses genome assemblies for numerous strains of Mycobacterium tuberculosis (MTB) as well assemblies for over 20 strains related to MTB and useful for comparative analysis. TBDB stores pre- and post-publication gene-expression data from M. tuberculosis and its close relatives, including over 3000 MTB microarrays, 95 RT-PCR datasets, 2700 microarrays for human and mouse TB related experiments, and 260 arrays for Streptomyces coelicolor. To enable wide use of these data, TBDB provides a suite of tools for searching, browsing, analyzing, and downloading the data. We provide here an overview of TBDB focusing on recent data releases and enhancements. In particular, we describe the recent release of a Global Genetic Diversity dataset for TB, support for short-read re-sequencing data, new tools for exploring gene expression data in the context of gene regulation, and the integration of a metabolic network reconstruction and BioCyc with TBDB. By integrating a wide range of genomic data with tools for their use, TBDB is a unique platform for both basic science research in TB, as well as research into the discovery and development of TB drugs, vaccines and biomarkers.


Asunto(s)
Bases de Datos Genéticas , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Bases de Datos Genéticas/tendencias , Regulación Bacteriana de la Expresión Génica , Variación Genética , Genoma Bacteriano , Biblioteca Genómica , Genómica/métodos , Humanos , Redes y Vías Metabólicas/genética , Mycobacterium tuberculosis/metabolismo , Sistemas en Línea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA