RESUMEN
Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are 'half van der Waals' metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer.
RESUMEN
Understanding the mechanisms involved in the covalent attachment of organic molecules to surfaces is a major challenge for nanotechnology and surface science. On the basis of classical organic chemistry mechanistic considerations, key issues such as selectivity and reactivity of the organic adsorbates could be rationalized and exploited for the design of molecular-scale circuits and devices. Here we use tris(benzocyclobutadieno)triphenylene, a singular Y-shaped hydrocarbon containing antiaromatic cyclobutadienoid rings, as a molecular probe to study the reaction of polycyclic conjugated molecules with atomic scale moieties, dangling-bond (DB) dimers on a hydrogen-passivated Ge(001):H surface. By combining molecular design, synthesis, scanning tunneling microscopy and spectroscopy (STM/STS) and computational modeling, we show that the attachment involves a concerted [4+2] cycloaddition reaction that is completely site-selective and fully reversible. This selectivity, governed by the bond alternation induced by the presence of the cyclobutadienoid rings, allows for the control of the orientation of the molecules with respect to the surface DB-patterning. We also demonstrate that by judicious modification of the electronic levels of the polycyclic benzenoid through substituents, the reaction barrier height can be modified. Finally, we show that after deliberate tip-induced covalent bond cleavage, adsorbed molecules can be used to fine tune the electronic states of the DB dimer. This power to engineer deliberately the bonding configuration and electronic properties opens new perspectives for creating prototypical nanoscale circuitry.
RESUMEN
A unified approach to the synthesis of the series of higher acenes up to previously unreported undecacene has been developed through the on-surface dehydrogenation of partially saturated precursors. These molecules could be converted into the parent acenes by both atomic manipulation with the tip of a scanning tunneling and atomic force microscope (STM/AFM) as well as by on-surface annealing. The structure of the generated acenes has been visualized by high-resolution non-contact AFM imaging and the evolution of the transport gap with the increase of the number of fused benzene rings has been determined on the basis of scanning tunneling spectroscopy (STS) measurements.
RESUMEN
Dangling bond (DB) arrays on Si(001):H and Ge(001):H surfaces can be patterned with atomic precision and they exhibit complex and rich physics making them interesting from both technological and fundamental perspectives. But their complex behavior often makes scanning tunneling microscopy (STM) images difficult to interpret and simulate. Recently it was shown that low-temperature imaging of unoccupied states of an unpassivated dimer on Ge(001):H results in a symmetric butterfly-like STM pattern, despite the fact that the equilibrium dimer configuration is expected to be a bistable, buckled geometry. Here, based on a thorough characterization of the low-bias switching events on Ge(001):H, we propose a new imaging model featuring a dynamical two-state rate equation. On both Si(001):H and Ge(001):H, this model allows us to reproduce the features of the observed symmetric empty-state images which strongly corroborates the idea that the patterns arise due to fast switching events and provides an insight into the relationship between the tunneling current and switching rates. We envision that our new imaging model can be applied to simulate other bistable systems where fluctuations arise from transiently charged electronic states.
RESUMEN
Controlling the strength of the coupling between organic molecules and single atoms provides a powerful tool for tuning electronic properties of single-molecule devices. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) supported by theoretical modeling, we study the interaction of a planar organic molecule (trinaphthylene) with a hydrogen-passivated Ge(001):H substrate and a single dangling bond quantum dot on that surface. The electronic structure of the molecule adsorbed on the hydrogen-passivated surface is similar to the gas phase structure and the measurements show that HOMO and LUMO states contribute to the STM filled and empty state images, respectively. Furthermore, we show that the electronic properties are not significantly affected when the molecule is attached to the single dangling bond, which is in contrast with the strong interaction of the molecule with a dangling bond dimer. Our results show that the dangling bond quantum dots could stabilize organic molecules on a hydrogenated semiconductor without affecting their originally designed gas phase electronic properties. Together with the ability to laterally manipulate the molecules on the surface, this will be advantageous in the construction of single-molecule devices, where the coupling and positioning of the molecules on the substrate could be tuned by a proper design of the surface quantum dot arrays, comprising both single and dimerized dangling bonds.
RESUMEN
Construction of single-molecule electronic devices requires the controlled manipulation of organic molecules and their properties. This could be achieved by tuning the interaction between the molecule and individual atoms by local "on-surface" chemistry, i.e., the controlled formation of chemical bonds between the species. We demonstrate here the reversible attachment of a planar conjugated polyaromatic molecule to a pair of unpassivated dangling bonds on a hydrogenated Ge(001):H surface via a Diels-Alder [4+2] addition using the tip of a scanning tunneling microscope (STM). Due to the small stability difference between the covalently bonded and a nearly undistorted structure attached to the dangling bond dimer by long-range dispersive forces, we show that at cryogenic temperatures the molecule can be switched between both configurations. The reversibility of this covalent bond forming reaction may be applied in the construction of complex circuits containing organic molecules with tunable properties.
RESUMEN
First-principles density functional theory (DFT) is used to analyze the stability of Pb intercalated phases under buffer layer graphene on SiC(0001) as a function of the supercell size, Pb coverage, and degree of Pb ordering. By comparing the chemical potentials of such two-dimensional Pb structures, we find that there is a family of structurally distinct thermodynamically preferred Pb subsurface configurations with minute stability differences. These differences are comparable to the thermal energies at about 450 °C, where the Pb intercalated phases are grown. High-resolution surface-diffraction experiments using Spot Profile Analysis Low-Energy Electron Diffraction (SPA-LEED) confirm this high degree of degeneracy of the Pb intercalated phases from broad, low-intensity moiré spots observed exclusively from intercalated Pb. The low intensity of the moiré spots implies the coexistence of structurally different subsurface Pb phases.
RESUMEN
Controlling the interlayer coupling in two-dimensional (2D) materials generates novel electronic and topological phases. Its effective implementation is commonly done with a transverse electric field. However, phases generated by high displacement fields are elusive in this standard approach. Here, we introduce an exceptionally large displacement field by structural modification of a model system: AB-stacked bilayer graphene (BLG) on a SiC(0001) surface. We show that upon intercalation of gadolinium, electronic states in the top graphene layers exhibit a significant difference in the on-site potential energy, which effectively breaks the interlayer coupling between them. As a result, for energies close to the corresponding Dirac points, the BLG system behaves like two electronically isolated single graphene layers. This is proven by local scanning tunneling microscopy (STM)/spectroscopy, corroborated by density functional theory, tight binding, and multiprobe STM transport. The work presents metal intercalation as a promising approach for the synthesis of 2D graphene heterostructures with electronic phases generated by giant displacement fields.
RESUMEN
Thermodynamic and kinetic analyses based on our first-principles density functional theory calculations are used to interpret the experimentally observed formation of Cu carpets intercalated under the top layer of a 2H-MoS2 substrate. Spontaneous Cu transport from Cu pyramids on top of the MoS2 substrate through surface point defects to the growing Cu carpet is shown to be driven by a slightly lower chemical potential for the Cu carpet. We demonstrate that the competition between a preference for a thicker Cu carpet and the cost of elastic stretching of the top MoS2 layer results in a selected Cu carpet thickness. We also propose that Cu transport occurs primarily via vacancy-mediated diffusion through constricting point defect portals.
RESUMEN
Understanding the reaction mechanisms of dehydrogenative Caryl-Caryl coupling is the key to directed formation of π-extended polycyclic aromatic hydrocarbons. Here we utilize isotopic labeling to identify the exact pathway of cyclodehydrogenation reaction in the on-surface synthesis of model atomically precise graphene nanoribbons (GNRs). Using selectively deuterated molecular precursors, we grow seven-atom-wide armchair GNRs on a Au(111) surface that display a specific hydrogen/deuterium (H/D) pattern with characteristic Raman modes. A distinct hydrogen shift across the fjord of Caryl-Caryl coupling is revealed by monitoring the ratios of gas-phase by-products of H2, HD, and D2 with in situ mass spectrometry. The identified reaction pathway consists of a conrotatory electrocyclization and a distinct [1,9]-sigmatropic D shift followed by H/D eliminations, which is further substantiated by nudged elastic band simulations. Our results not only clarify the cyclodehydrogenation process in GNR synthesis but also present a rational strategy for designing on-surface reactions towards nanographene structures with precise hydrogen/deuterium isotope labeling patterns.
RESUMEN
Spatial control over molecular movement is typically limited because motion at the atomic scale follows stochastic processes. We used scanning tunneling microscopy to bring single molecules into a stable orientation of high translational mobility where they moved along precisely defined tracks. Single dibromoterfluorene molecules moved over large distances of 150 nanometers with extremely high spatial precision of 0.1 angstrom across a silver (111) surface. The electrostatic nature of the effect enabled the selective application of repulsive and attractive forces to send or receive single molecules. The high control allows us to precisely move an individual and specific molecular entity between two separate probes, opening avenues for velocity measurements and thus energy dissipation studies of single molecules in real time during diffusion and collision.
RESUMEN
Atomically precise graphene nanoribbons (GNRs) attract great interest because of their highly tunable electronic, optical, and transport properties. However, on-surface synthesis of GNRs is typically based on metal surface-assisted chemical reactions, where metallic substrates strongly screen their designer electronic properties and limit further applications. Here, we present an on-surface synthesis approach to forming atomically precise GNRs directly on semiconducting metal oxide surfaces. The thermally triggered multistep transformations preprogrammed in our precursors' design rely on highly selective and sequential activations of carbon-bromine (C-Br) and carbon-fluorine (C-F) bonds and cyclodehydrogenation. The formation of planar armchair GNRs terminated by well-defined zigzag ends is confirmed by scanning tunneling microscopy and spectroscopy, which also reveal weak interaction between GNRs and the rutile titanium dioxide substrate.
RESUMEN
Graphene nanoribbons (GNRs) and their derivatives attract growing attention due to their excellent electronic and magnetic properties as well as the fine-tuning of such properties that can be obtained by heteroatom substitution and/or edge morphology modification. Here, we introduce graphene nanoribbon derivatives-organometallic hybrids with gold atoms incorporated between the carbon skeleton and side Cl atoms. We show that narrow chlorinated 5-AGNROHs (armchair graphene nanoribbon organometallic hybrids) can be fabricated by on-surface polymerization with omission of the cyclodehydrogenation reaction by a proper choice of tailored molecular precursors. Finally, we describe a route to exchange chlorine atoms connected through gold atoms to the carbon skeleton by hydrogen atom treatment. This is achieved directly on the surface, resulting in perfect unsubstituted hydrogen-terminated GNRs. This will be beneficial in the molecule on-surface processing when the preparation of final unsubstituted hydrocarbon structure is desired.
RESUMEN
Miniaturization of electronic circuits into the single-atom level requires novel approaches to characterize transport properties. Due to its unrivaled precision, scanning probe microscopy is regarded as the method of choice for local characterization of atoms and single molecules supported on surfaces. Here we investigate electronic transport along the anisotropic germanium (001) surface with the use of two-probe scanning tunneling spectroscopy and first-principles transport calculations. We introduce a method for the determination of the transconductance in our two-probe experimental setup and demonstrate how it captures energy-resolved information about electronic transport through the unoccupied surface states. The sequential opening of two transport channels within the quasi-one-dimensional Ge dimer rows in the surface gives rise to two distinct resonances in the transconductance spectroscopic signal, consistent with phase-coherence lengths of up to 50 nm and anisotropic electron propagation. Our work paves the way for the electronic transport characterization of quantum circuits engineered on surfaces.
RESUMEN
A nanographene formed by the fusion of 22 benzene rings has been prepared by combining an in-solution Pd-catalyzed cycloaddition reaction and on-surface Au-promoted cyclodehydrogenation. The structure and electronic properties of the resulting three-fold symmetric C66H24 molecule have been characterized by scanning probe microscopy with atomic resolution and corroborated by theoretical modelling.
RESUMEN
Direct characterization of planar atomic or molecular scale devices and circuits on a supporting surface by multi-probe measurements requires unprecedented stability of single atom contacts and manipulation of scanning probes over large, nanometer scale area with atomic precision. In this work, we describe the full methodology behind atomically defined two-probe scanning tunneling microscopy (STM) experiments performed on a model system: dangling bond dimer wire supported on a hydrogenated germanium (0 0 1) surface. We show that 70 nm long atomic wire can be simultaneously approached by two independent STM scanners with exact probe to probe distance reaching down to 30 nm. This allows direct wire characterization by two-probe I-V characteristics at distances below 50 nm. Our technical results presented in this work open a new area for multi-probe research, which can be now performed with precision so far accessible only by single-probe scanning probe microscopy (SPM) experiments.
RESUMEN
The on-surface synthesis of nonacene has been accomplished by dehydrogenation of an air-stable partially saturated precursor, which could be aromatized by using a combined scanning tunneling and atomic force microscope as well as by on-surface annealing. This transformation allowed the in-detail analysis of the electronic properties of nonacene molecules physisorbed on Au(111) by scanning tunneling spectroscopy measurements. The spatial mapping of molecular orbitals was corroborated by density functional theory calculations. Furthermore, the thermally induced dehydrogenation uncovered the isomerization of intermediate dihydrononacene species, which allowed for their in-depth structural and electronic characterization.
RESUMEN
The molecular conformation of a bisbinaphthyldurene (BBD) molecule is manipulated using a low-temperature ultrahigh-vacuum scanning tunneling microscope (LT-UHV STM) on an Au(111) surface. BBD has two binaphthyl groups at both ends connected to a central durene leading to anti/syn/flat conformers. In solution, dynamic nuclear magnetic resonance indicated the fast interexchange between the anti and syn conformers as confirmed by density functional theory calculations. After deposition in a submonolayer on an Au(111) surface, only the syn conformers were observed forming small islands of self-assembled syn dimers. The syn dimers can be separated into syn monomers by STM molecular manipulations. A flat conformer can also be prepared by using a peculiar mechanical unfolding of a syn monomer by STM manipulations. The experimental STM dI/dV and theoretical elastic scattering quantum chemistry maps of the low-lying tunneling resonances confirmed the flat conformer BBD molecule STM production. The key BBD electronic states for a step-by-step STM inelastic excitation lateral motion on the Au(111) are presented requiring no mechanical interactions between the STM tip apex and the BBD. On the BBD molecular board, selected STM tip apex positions for this inelastic tunneling excitation enable the flat BBD to move controllably on Au(111) by a step of 0.29 nm per bias voltage ramp.