Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Annu Rev Cell Dev Biol ; 34: 217-238, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30113887

RESUMEN

Uncovering the mechanisms that underlie the biogenesis and maintenance of eukaryotic organelles is a vibrant and essential area of biological research. In comparison, little attention has been paid to the process of compartmentalization in bacteria and archaea. This lack of attention is in part due to the common misconception that organelles are a unique evolutionary invention of the "complex" eukaryotic cell and are absent from the "primitive" bacterial and archaeal cells. Comparisons across the tree of life are further complicated by the nebulous criteria used to designate subcellular structures as organelles. Here, with the aid of a unified definition of a membrane-bounded organelle, we present some of the recent findings in the study of lipid-bounded organelles in bacteria and archaea.


Asunto(s)
Archaea/genética , Bacterias/genética , Compartimento Celular/genética , Orgánulos/genética , Membrana Celular/química , Membrana Celular/genética , Lípidos/química , Lípidos/genética , Orgánulos/química
2.
Nature ; 606(7912): 160-164, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35585231

RESUMEN

Cellular iron homeostasis is vital and maintained through tight regulation of iron import, efflux, storage and detoxification1-3. The most common modes of iron storage use proteinaceous compartments, such as ferritins and related proteins4,5. Although lipid-bounded iron compartments have also been described, the basis for their formation and function remains unknown6,7. Here we focus on one such compartment, herein named the 'ferrosome', that was previously observed in the anaerobic bacterium Desulfovibrio magneticus6. Using a proteomic approach, we identify three ferrosome-associated (Fez) proteins that are responsible for forming ferrosomes in D. magneticus. Fez proteins are encoded in a putative operon and include FezB, a P1B-6-ATPase found in phylogenetically and metabolically diverse species of bacteria and archaea. We show that two other bacterial species, Rhodopseudomonas palustris and Shewanella putrefaciens, make ferrosomes through the action of their six-gene fez operon. Additionally, we find that fez operons are sufficient for ferrosome formation in foreign hosts. Using S. putrefaciens as a model, we show that ferrosomes probably have a role in the anaerobic adaptation to iron starvation. Overall, this work establishes ferrosomes as a new class of iron storage organelles and sets the stage for studying their formation and structure in diverse microorganisms.


Asunto(s)
Compuestos Férricos , Bacterias Gramnegativas , Familia de Multigenes , Orgánulos , Proteínas Bacterianas/genética , Desulfovibrio , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/genética , Orgánulos/genética , Orgánulos/metabolismo , Filogenia , Proteómica , Rhodopseudomonas , Shewanella putrefaciens
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110403

RESUMEN

Magnetosomes are lipid-bound organelles that direct the biomineralization of magnetic nanoparticles in magnetotactic bacteria. Magnetosome membranes are not uniform in size and can grow in a biomineralization-dependent manner. However, the underlying mechanisms of magnetosome membrane growth regulation remain unclear. Using cryoelectron tomography, we systematically examined mutants with defects at various stages of magnetosome formation to identify factors involved in controlling membrane growth. We found that a conserved serine protease, MamE, plays a key role in magnetosome membrane growth regulation. When the protease activity of MamE is disrupted, magnetosome membrane growth is restricted, which, in turn, limits the size of the magnetite particles. Consistent with this finding, the upstream regulators of MamE protease activity, MamO and MamM, are also required for magnetosome membrane growth. We then used a combination of candidate and comparative proteomics approaches to identify Mms6 and MamD as two MamE substrates. Mms6 does not appear to participate in magnetosome membrane growth. However, in the absence of MamD, magnetosome membranes grow to a larger size than the wild type. Furthermore, when the cleavage of MamD by MamE protease is blocked, magnetosome membrane growth and biomineralization are severely inhibited, phenocopying the MamE protease-inactive mutant. We therefore propose that the growth of magnetosome membranes is controlled by a protease-mediated switch through processing of MamD. Overall, our work shows that, like many eukaryotic systems, bacteria control the growth and size of biominerals by manipulating the physical properties of intracellular organelles.


Asunto(s)
Proteínas Bacterianas/metabolismo , Magnetosomas/metabolismo , Magnetospirillum/metabolismo , Orgánulos/metabolismo , Serina Proteasas/metabolismo , Óxido Ferrosoférrico/metabolismo , Proteolisis , Proteómica/métodos , Serina Endopeptidasas/metabolismo
4.
J Bacteriol ; 206(6): e0000824, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38819153

RESUMEN

Magnetotactic bacteria are a diverse group of microbes that use magnetic particles housed within intracellular lipid-bounded magnetosome organelles to guide navigation along geomagnetic fields. The development of magnetosomes and their magnetic crystals in Magnetospirillum magneticum AMB-1 requires the coordinated action of numerous proteins. Most proteins are thought to localize to magnetosomes during the initial stages of organelle biogenesis, regardless of environmental conditions. However, the magnetite-shaping protein Mms6 is only found in magnetosomes that contain magnetic particles, suggesting that it might conditionally localize after the formation of magnetosome membranes. The mechanisms for this unusual mode of localization to magnetosomes are unclear. Here, using pulse-chase labeling, we show that Mms6 translated under non-biomineralization conditions translocates to pre-formed magnetosomes when cells are shifted to biomineralizing conditions. Genes essential for magnetite production, namely mamE, mamM, and mamO, are necessary for Mms6 localization, whereas mamN inhibits Mms6 localization. MamD localization was also investigated and found to be controlled by similar cellular factors. The membrane localization of Mms6 is dependent on a glycine-leucine repeat region, while the N-terminal domain of Mms6 is necessary for retention in the cytosol and impacts conditional localization to magnetosomes. The N-terminal domain is also sufficient to impart conditional magnetosome localization to MmsF, altering its native constitutive magnetosome localization. Our work illuminates an alternative mode of protein localization to magnetosomes in which Mms6 and MamD are excluded from magnetosomes by MamN until biomineralization initiates, whereupon they translocate into magnetosome membranes to control the development of growing magnetite crystals.IMPORTANCEMagnetotactic bacteria (MTB) are a diverse group of bacteria that form magnetic nanoparticles surrounded by membranous organelles. MTB are widespread and serve as a model for bacterial organelle formation and biomineralization. Magnetosomes require a specific cohort of proteins to enable magnetite formation, but how those proteins are localized to magnetosome membranes is unclear. Here, we investigate protein localization using pulse-chase microscopy and find a system of protein coordination dependent on biomineralization-permissible conditions. In addition, our findings highlight a protein domain that alters the localization behavior of magnetosome proteins. Utilization of this protein domain may provide a synthetic route for conditional functionalization of magnetosomes for biotechnological applications.


Asunto(s)
Proteínas Bacterianas , Magnetosomas , Magnetospirillum , Magnetospirillum/genética , Magnetospirillum/metabolismo , Magnetosomas/metabolismo , Magnetosomas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Transporte de Proteínas
5.
PLoS Genet ; 16(2): e1008499, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32053597

RESUMEN

Many species of bacteria can manufacture materials on a finer scale than those that are synthetically made. These products are often produced within intracellular compartments that bear many hallmarks of eukaryotic organelles. One unique and elegant group of organisms is at the forefront of studies into the mechanisms of organelle formation and biomineralization. Magnetotactic bacteria (MTB) produce organelles called magnetosomes that contain nanocrystals of magnetic material, and understanding the molecular mechanisms behind magnetosome formation and biomineralization is a rich area of study. In this Review, we focus on the genetics behind the formation of magnetosomes and biomineralization. We cover the history of genetic discoveries in MTB and key insights that have been found in recent years and provide a perspective on the future of genetic studies in MTB.


Asunto(s)
Biomineralización/genética , Desulfovibrio/genética , Genes Bacterianos , Magnetosomas/metabolismo , Magnetospirillum/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Elementos Transponibles de ADN/genética , Desulfovibrio/citología , Desulfovibrio/metabolismo , Óxido Ferrosoférrico/metabolismo , Magnetosomas/genética , Magnetospirillum/citología , Magnetospirillum/metabolismo , Nanopartículas del Metal , Mutagénesis , Mutación
6.
Environ Microbiol ; 22(3): 823-831, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31187921

RESUMEN

Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that mineralize dissolved iron into intracellular magnetic crystals. After cell death, these crystals are trapped into sediments that remove iron from the soluble pool. MTB may significantly impact the iron biogeochemical cycle, especially in the ocean where dissolved iron limits nitrogen fixation and primary productivity. A thorough assessment of their impact has been hampered by a lack of methodology to measure the amount of, and variability in, their intracellular iron content. We quantified the iron mass contained in single MTB cells of Magnetospirillum magneticum strain AMB-1 using a time-resolved inductively coupled plasma-mass spectrometry methodology. Bacterial iron content depends on the external iron concentration, and reaches a maximum value of ~10-6 ng of iron per cell. From these results, we calculated the flux of dissolved iron incorporation into environmental MTB populations and conclude that MTB may mineralize a significant fraction of dissolved iron into crystals.


Asunto(s)
Microbiología Ambiental , Hierro/análisis , Hierro/metabolismo , Magnetospirillum/metabolismo , Magnetismo , Magnetosomas/metabolismo , Análisis de la Célula Individual
7.
Appl Environ Microbiol ; 86(22)2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32887716

RESUMEN

Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that form intracellular nanoparticles of magnetite (Fe3O4) or greigite (Fe3S4) in a genetically controlled manner. Magnetite and greigite synthesis requires MTB to transport a large amount of iron from the environment. Most intracellular iron was proposed to be contained within the crystals. However, recent mass spectrometry studies suggest that MTB may contain a large amount of iron that is not precipitated in crystals. Here, we attempted to resolve these discrepancies by performing chemical and magnetic assays to quantify the different iron pools in the magnetite-forming strain Magnetospirillum magneticum AMB-1, as well as in mutant strains showing defects in crystal precipitation, cultivated at various iron concentrations. All results show that magnetite represents at most 30% of the total intracellular iron under our experimental conditions and even less in the mutant strains. We further examined the iron speciation and subcellular localization in AMB-1 using the fluorescent indicator FIP-1, which was designed for the detection of labile Fe(II). Staining with this probe suggests that unmineralized reduced iron is found in the cytoplasm and associated with magnetosomes. Our results demonstrate that, under our experimental conditions, AMB-1 is able to accumulate a large pool of iron distinct from magnetite. Finally, we discuss the biochemical and geochemical implications of these results.IMPORTANCE Magnetotactic bacteria (MTB) produce iron-based intracellular magnetic crystals. They represent a model system for studying iron homeostasis and biomineralization in microorganisms. MTB sequester a large amount of iron in their crystals and have thus been proposed to significantly impact the iron biogeochemical cycle. Several studies proposed that MTB could also accumulate iron in a reservoir distinct from their crystals. Here, we present a chemical and magnetic methodology for quantifying the iron pools in the magnetotactic strain AMB-1. Results showed that most iron is not contained in crystals. We then adapted protocols for the fluorescent Fe(II) detection in bacteria and showed that iron could be detected outside crystals using fluorescence assays. This work suggests a more complex picture for iron homeostasis in MTB than previously thought. Because iron speciation controls its fate in the environment, our results also provide important insights into the geochemical impact of MTB.


Asunto(s)
Óxido Ferrosoférrico/metabolismo , Hierro/metabolismo , Magnetospirillum/metabolismo , Absorciometría de Fotón , Espectrometría de Masas , Espectroscopía de Absorción de Rayos X
8.
PLoS Biol ; 14(3): e1002402, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26981620

RESUMEN

Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions. By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. Our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization.


Asunto(s)
Proteínas Bacterianas/metabolismo , Evolución Molecular , Óxido Ferrosoférrico/metabolismo , Magnetospirillum/enzimología , Serina Proteasas/metabolismo , Dominio Catalítico , Proteolisis , Elementos de Transición/metabolismo
9.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30194101

RESUMEN

Magnetosomes are complex bacterial organelles that serve as model systems for studying bacterial cell biology, biomineralization, and global iron cycling. Magnetosome biogenesis is primarily studied in two closely related Alphaproteobacteria of the genus Magnetospirillum that form cubooctahedral-shaped magnetite crystals within a lipid membrane. However, chemically and structurally distinct magnetic particles have been found in physiologically and phylogenetically diverse bacteria. Due to a lack of molecular genetic tools, the mechanistic diversity of magnetosome formation remains poorly understood. Desulfovibrio magneticus RS-1 is an anaerobic sulfate-reducing deltaproteobacterium that forms bullet-shaped magnetite crystals. A recent forward genetic screen identified 10 genes in the conserved magnetosome gene island of D. magneticus that are essential for its magnetic phenotype. However, this screen likely missed mutants with defects in crystal size, shape, and arrangement. Reverse genetics to target the remaining putative magnetosome genes using standard genetic methods of suicide vector integration have not been feasible due to the low transconjugation efficiency. Here, we present a reverse genetic method for targeted mutagenesis in D. magneticus using a replicative plasmid. To test this method, we generated a mutant resistant to 5-fluorouracil by making a markerless deletion of the upp gene that encodes uracil phosphoribosyltransferase. We also used this method for targeted marker exchange mutagenesis by replacing kupM, a gene identified in our previous screen as a magnetosome formation factor, with a streptomycin resistance cassette. Overall, our results show that targeted mutagenesis using a replicative plasmid is effective in D. magneticus and may also be applied to other genetically recalcitrant bacteria.IMPORTANCE Magnetotactic bacteria (MTB) are a group of organisms that form intracellular nanometer-scale magnetic crystals though a complex process involving lipid and protein scaffolds. These magnetic crystals and their lipid membranes, termed magnetosomes, are model systems for studying bacterial cell biology and biomineralization and are potential platforms for biotechnological applications. Due to a lack of genetic tools and unculturable representatives, the mechanisms of magnetosome formation in phylogenetically deeply branching MTB remain unknown. These MTB contain elongated bullet-/tooth-shaped magnetite and greigite crystals that likely form in a manner distinct from that of the cubooctahedral-shaped magnetite crystals of the genetically tractable MTB within the Alphaproteobacteria Here, we present a method for genome editing in Desulfovibrio magneticus RS-1, a cultured representative of the deeply branching MTB of the class Deltaproteobacteria This marks a crucial step in developing D. magneticus as a model for studying diverse mechanisms of magnetic particle formation by MTB.


Asunto(s)
Desulfovibrio/genética , Edición Génica/métodos , Genoma Bacteriano , Genética Inversa/métodos , Anaerobiosis , Desulfovibrio/metabolismo , Magnetosomas/genética , Magnetosomas/metabolismo , Mutagénesis , Plásmidos/genética , Plásmidos/metabolismo
10.
PLoS Genet ; 11(1): e1004811, 2015 01.
Artículo en Inglés | MEDLINE | ID: mdl-25569806

RESUMEN

Model genetic systems are invaluable, but limit us to understanding only a few organisms in detail, missing the variations in biological processes that are performed by related organisms. One such diverse process is the formation of magnetosome organelles by magnetotactic bacteria. Studies of model magnetotactic α-proteobacteria have demonstrated that magnetosomes are cubo-octahedral magnetite crystals that are synthesized within pre-existing membrane compartments derived from the inner membrane and orchestrated by a specific set of genes encoded within a genomic island. However, this model cannot explain all magnetosome formation, which is phenotypically and genetically diverse. For example, Desulfovibrio magneticus RS-1, a δ-proteobacterium for which we lack genetic tools, produces tooth-shaped magnetite crystals that may or may not be encased by a membrane with a magnetosome gene island that diverges significantly from those of the α-proteobacteria. To probe the functional diversity of magnetosome formation, we used modern sequencing technology to identify hits in RS-1 mutated with UV or chemical mutagens. We isolated and characterized mutant alleles of 10 magnetosome genes in RS-1, 7 of which are not found in the α-proteobacterial models. These findings have implications for our understanding of magnetosome formation in general and demonstrate the feasibility of applying a modern genetic approach to an organism for which classic genetic tools are not available.


Asunto(s)
Desulfovibrio/genética , Magnetosomas/genética , Orgánulos/genética , Alelos , Desulfovibrio/metabolismo , Óxido Ferrosoférrico/metabolismo , Islas Genómicas , Hierro/metabolismo , Familia de Multigenes , Mutación
11.
Proc Natl Acad Sci U S A ; 112(13): 3904-9, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25775527

RESUMEN

Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. To dissect the biological components that control this process, we have carried out a genetic and biochemical study of proteins proposed to function in iron mineralization. In this study, we show that the redox sites of c-type cytochromes of the Magnetospirillum magneticum AMB-1 magnetosome island, MamP and MamT, are essential to their physiological function and that ablation of one or both heme motifs leads to loss of function, suggesting that their ability to carry out redox chemistry in vivo is important. We also develop a method to heterologously express fully heme-loaded MamP from AMB-1 for in vitro biochemical studies, which show that its Fe(III)-Fe(II) redox couple is set at an unusual potential (-89 ± 11 mV) compared with other related cytochromes involved in iron reduction or oxidation. Despite its low reduction potential, it remains competent to oxidize Fe(II) to Fe(III) and mineralize iron to produce mixed-valent iron oxides. Finally, in vitro mineralization experiments suggest that Mms mineral-templating peptides from AMB-1 can modulate the iron redox chemistry of MamP.


Asunto(s)
Proteínas Bacterianas/química , Citocromos/química , Magnetosomas/metabolismo , Magnetospirillum/metabolismo , Oxidación-Reducción , Fenómenos Biomecánicos , Compuestos Férricos/química , Hemo/química , Concentración de Iones de Hidrógeno , Iones , Hierro/química , Nanopartículas del Metal/química , Metales/química , Microscopía Electrónica de Transmisión , Nanopartículas/química , Oxígeno/química , Péptidos/química , Plásmidos/metabolismo , Solubilidad
12.
J Biol Chem ; 291(34): 17941-52, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27302060

RESUMEN

Magnetotactic bacteria are aquatic organisms that produce subcellular magnetic particles in order to orient in the earth's geomagnetic field. MamE, a predicted HtrA protease required to produce magnetite crystals in the magnetotactic bacterium Magnetospirillum magneticum AMB-1, was recently shown to promote the proteolytic processing of itself and two other biomineralization factors in vivo Here, we have analyzed the in vivo processing patterns of three proteolytic targets and used this information to reconstitute proteolysis with a purified form of MamE. MamE cleaves a custom peptide substrate with positive cooperativity, and its autoproteolysis can be stimulated with exogenous substrates or peptides that bind to either of its PDZ domains. A misregulated form of the protease that circumvents specific genetic requirements for proteolysis causes biomineralization defects, showing that proper regulation of its activity is required during magnetite biosynthesis in vivo Our results represent the first reconstitution of the proteolytic activity of MamE and show that its behavior is consistent with the previously proposed checkpoint model for biomineralization.


Asunto(s)
Proteínas Bacterianas/química , Magnetospirillum/enzimología , Péptido Hidrolasas/química , Péptidos/química , Proteolisis , Proteínas Bacterianas/metabolismo , Óxido Ferrosoférrico/metabolismo , Dominios PDZ , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo
13.
Biophys J ; 108(5): 1268-74, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25762338

RESUMEN

Magnetotactic bacteria (MTB) build magnetic nanoparticles in chain configuration to generate a permanent dipole in their cells as a tool to sense the Earth's magnetic field for navigation toward favorable habitats. The majority of known MTB align their nanoparticles along the magnetic easy axes so that the directions of the uniaxial symmetry and of the magnetocrystalline anisotropy coincide. Desulfovibrio magneticus sp. strain RS-1 forms bullet-shaped magnetite nanoparticles aligned along their (100) magnetocrystalline hard axis, a configuration energetically unfavorable for formation of strong dipoles. We used ferromagnetic resonance spectroscopy to quantitatively determine the magnetocrystalline and uniaxial anisotropy fields of the magnetic assemblies as indicators for a cellular dipole with stable direction in strain RS-1. Experimental and simulated ferromagnetic resonance spectral data indicate that the negative effect of the configuration is balanced by the bullet-shaped morphology of the nanoparticles, which generates a pronounced uniaxial anisotropy field in each magnetosome. The quantitative comparison with anisotropy fields of Magnetospirillum gryphiswaldense, a model MTB with equidimensional magnetite particles aligned along their (111) magnetic easy axes in well-organized chain assemblies, shows that the effectiveness of the dipole is similar to that in RS-1. From a physical perspective, this could be a reason for the persistency of bullet-shaped magnetosomes during the evolutionary development of magnetotaxis in MTB.


Asunto(s)
Desulfovibrio/metabolismo , Óxido Ferrosoférrico/farmacología , Nanopartículas de Magnetita/química , Anisotropía , Desulfovibrio/efectos de los fármacos , Campos Magnéticos
14.
J Bacteriol ; 196(17): 3111-21, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24957623

RESUMEN

Many bacterial species contain multiple actin-like proteins tasked with the execution of crucial cell biological functions. MamK, an actin-like protein found in magnetotactic bacteria, is important in organizing magnetosome organelles into chains that are used for navigation along geomagnetic fields. MamK and numerous other magnetosome formation factors are encoded by a genetic island termed the magnetosome island. Unlike most magnetotactic bacteria, Magnetospirillum magneticum AMB-1 (AMB-1) contains a second island of magnetosome-related genes that was named the magnetosome islet. A homologous copy of mamK, mamK-like, resides within this islet and encodes a protein capable of filament formation in vitro. Previous work had shown that mamK-like is expressed in vivo, but its function, if any, had remained unknown. Though MamK-like is highly similar to MamK, it contains a mutation that in MamK and other actins blocks ATPase activity in vitro and filament dynamics in vivo. Here, using genetic analysis, we demonstrate that mamK-like has an in vivo role in assisting organelle alignment. In addition, MamK-like forms filaments in vivo in a manner that is dependent on the presence of MamK and the two proteins interact in a yeast two-hybrid assay. Surprisingly, despite the ATPase active-site mutation, MamK-like is capable of ATP hydrolysis in vitro and promotes MamK filament turnover in vivo. Taken together, these experiments suggest that direct interactions between MamK and MamK-like contribute to magnetosome alignment in AMB-1.


Asunto(s)
Actinas/química , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Magnetosomas/fisiología , Magnetospirillum/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Magnetospirillum/citología , Magnetospirillum/genética , Datos de Secuencia Molecular , Mutación
15.
J Biol Chem ; 288(6): 4265-77, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23204522

RESUMEN

It is now recognized that actin-like proteins are widespread in bacteria and, in contrast to eukaryotic actins, are highly diverse in sequence and function. The bacterial actin, MamK, represents a clade, primarily found in magnetotactic bacteria, that is involved in the proper organization of subcellular organelles, termed magnetosomes. We have previously shown that MamK from Magnetospirillum magneticum AMB-1 (AMB-1) forms dynamic filaments in vivo. To gain further insights into the molecular mechanisms that underlie MamK dynamics and function, we have now studied the in vitro properties of MamK. We demonstrate that MamK is an ATPase that, in the presence of ATP, assembles rapidly into filaments that disassemble once ATP is depleted. The mutation of a conserved active site residue (E143A) abolishes ATPase activity of MamK but not its ability to form filaments. Filament disassembly depends on both ATPase activity and potassium levels, the latter of which results in the organization of MamK filaments into bundles. These data are consistent with observations indicating that accessory factors are required to promote filament disassembly and for spatial organization of filaments in vivo. We also used cryo-electron microscopy to obtain a high resolution structure of MamK filaments. MamK adopts a two-stranded helical filament architecture, but unlike eukaryotic actin and other actin-like filaments, subunits in MamK strands are unstaggered giving rise to a unique filament architecture. Beyond extending our knowledge of the properties and function of MamK in magnetotactic bacteria, this study emphasizes the functional and structural diversity of bacterial actins in general.


Asunto(s)
Actinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Magnetospirillum/enzimología , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Magnetospirillum/genética , Mutación Missense
16.
Proc Natl Acad Sci U S A ; 108(33): E480-7, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21784982

RESUMEN

The magnetosome, a biomineralizing organelle within magnetotactic bacteria, allows their navigation along geomagnetic fields. Magnetosomes are membrane-bound compartments containing magnetic nanoparticles and organized into a chain within the cell, the assembly and biomineralization of magnetosomes are controlled by magnetosome-associated proteins. Here, we describe the crystal structures of the magnetosome-associated protein, MamA, from Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. MamA folds as a sequential tetra-trico-peptide repeat (TPR) protein with a unique hook-like shape. Analysis of the MamA structures indicates two distinct domains that can undergo conformational changes. Furthermore, structural analysis of seven crystal forms verified that the core of MamA is not affected by crystallization conditions and identified three protein-protein interaction sites, namely a concave site, a convex site, and a putative TPR repeat. Additionally, relying on transmission electron microscopy and size exclusion chromatography, we show that highly stable complexes form upon MamA homooligomerization. Disruption of the MamA putative TPR motif or N-terminal domain led to protein mislocalization in vivo and prevented MamA oligomerization in vitro. We, therefore, propose that MamA self-assembles through its putative TPR motif and its concave site to create a large homooligomeric scaffold which can interact with other magnetosome-associated proteins via the MamA convex site. We discuss the structural basis for TPR homooligomerization that allows the proper function of a prokaryotic organelle.


Asunto(s)
Proteínas Bacterianas/metabolismo , Magnetospirillum/metabolismo , Polimerizacion , Cristalografía por Rayos X , Magnetospirillum/química , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
17.
Biochemistry ; 52(40): 6928-39, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24015924

RESUMEN

For many years, bacteria were considered rather simple organisms, but the dogmatic notion that subcellular organization is a eukaryotic trait has been overthrown for more than a decade. The discovery of homologues of the eukaryotic cytoskeletal proteins actin, tubulin, and intermediate filaments in bacteria has been instrumental in changing this view. Over the past few years, we have gained an incredible level of insight into the diverse family of bacterial actins and their molecular workings. Here we review the functional, biochemical, and structural features of the most well-studied bacterial actins.


Asunto(s)
Actinas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Actinas/química , Actinas/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Citoesqueleto/metabolismo , Proteínas de Escherichia coli/fisiología , Filogenia
18.
Mol Microbiol ; 85(4): 684-99, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22716969

RESUMEN

Magnetotactic bacteria (MTB) use magnetosomes, membrane-bound crystals of magnetite or greigite, for navigation along geomagnetic fields. In Magnetospirillum magneticum sp. AMB-1, and other MTB, a magnetosome gene island (MAI) is essential for every step of magnetosome formation. An 8-gene region of the MAI encodes several factors implicated in control of crystal size and morphology in previous genetic and proteomic studies. We show that these factors play a minor role in magnetite biomineralization in vivo. In contrast, MmsF, a previously uncharacterized magnetosome membrane protein encoded within the same region plays a dominant role in defining crystal size and morphology and is sufficient for restoring magnetite synthesis in the absence of the other major biomineralization candidates. In addition, we show that the 18 genes of the mamAB gene cluster of the MAI are sufficient for the formation of an immature magnetosome organelle. Addition of MmsF to these 18 genes leads to a significant enhancement of magnetite biomineralization and an increase in the cellular magnetic response. These results define a new biomineralization protein and lay down the foundation for the design of autonomous gene cassettes for the transfer of the magnetic phenotype in other bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Óxido Ferrosoférrico/metabolismo , Magnetosomas/metabolismo , Magnetospirillum/metabolismo , Proteínas de la Membrana/metabolismo , Bacterias , Proteínas Bacterianas/genética , Magnetosomas/ultraestructura , Magnetospirillum/genética , Proteínas de la Membrana/genética , Microscopía Electrónica , Familia de Multigenes , Mycobacterium
19.
Proc Natl Acad Sci U S A ; 107(12): 5593-8, 2010 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-20212111

RESUMEN

Although membrane-bounded compartments are commonly considered a unique eukaryotic characteristic, many species of bacteria have organelles. Compartmentalization is well studied in eukaryotes; however, the molecular factors and processes leading to organelle formation in bacteria are poorly understood. We use the magnetosome compartments of magnetotactic bacteria as a model system to investigate organelle biogenesis in a prokaryotic system. The magnetosome is an invagination of the cell membrane that contains a specific set of proteins able to direct the synthesis of a nanometer-sized magnetite crystal. A well-conserved region called the magnetosome island (MAI) is known to be essential for magnetosome formation and contains most of the genes previously implicated in magnetosome formation. Here, we present a comprehensive functional analysis of the MAI genes in a magnetotactic bacterium, Magnetospirillum magneticum AMB-1. By characterizing MAI deletion mutants, we show that parts of its conserved core are not essential for magnetosome biogenesis and that nonconserved genes are important for crystal formation. Most importantly, we show that the mamAB gene cluster encodes for factors important for magnetosome membrane biogenesis, for targeting of proteins to this compartment and for several steps during magnetite production. Altogether, this genetic analysis defines the function of more than a dozen factors participating in magnetosome formation and shows that magnetosomes are assembled in a step-wise manner in which membrane biogenesis, magnetosome protein localization, and biomineralization are placed under discrete genetic control.


Asunto(s)
Magnetosomas/genética , Magnetospirillum/genética , Proteínas Bacterianas/metabolismo , Óxido Ferrosoférrico/metabolismo , Eliminación de Gen , Genes Bacterianos , Magnetismo , Magnetosomas/metabolismo , Magnetosomas/ultraestructura , Magnetospirillum/metabolismo , Magnetospirillum/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Biológicos , Familia de Multigenes , Fenotipo
20.
Proc Natl Acad Sci U S A ; 107(27): 12263-8, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20566879

RESUMEN

Intracellular magnetite crystal formation by magnetotactic bacteria has emerged as a powerful model for investigating the cellular and molecular mechanisms of biomineralization, a process common to all branches of life. Although magnetotactic bacteria are phylogenetically diverse and their crystals morphologically diverse, studies to date have focused on a few, closely related species with similar crystal habits. Here, we investigate the process of magnetite biomineralization in Desulfovibrio magneticus sp. RS-1, the only reported species of cultured magnetotactic bacteria that is outside of the alpha-Proteobacteria and that forms bullet-shaped crystals. Using a variety of high-resolution imaging and analytical tools, we show that RS-1 cells form amorphous, noncrystalline granules containing iron and phosphorus before forming magnetite crystals. Using NanoSIMS (dynamic secondary ion mass spectroscopy), we show that the iron-phosphorus granules and the magnetite crystals are likely formed through separate cellular processes. Analysis of the cellular ultrastructure of RS-1 using cryo-ultramicrotomy, cryo-electron tomography, and tomography of ultrathin sections reveals that the magnetite crystals are not surrounded by membranes but that the iron-phosphorus granules are surrounded by membranous compartments. The varied cellular paths for the formation of these two minerals lead us to suggest that the iron-phosphorus granules constitute a distinct bacterial organelle.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Desulfovibrio/metabolismo , Hierro/metabolismo , Fósforo/metabolismo , Microscopía por Crioelectrón , Cristalización , Gránulos Citoplasmáticos/química , Desulfovibrio/química , Desulfovibrio/ultraestructura , Tomografía con Microscopio Electrónico , Óxido Ferrosoférrico/química , Magnetosomas/metabolismo , Magnetosomas/ultraestructura , Microscopía Electrónica de Transmisión , Minerales/química , Periplasma/metabolismo , Periplasma/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA