Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
EMBO J ; 39(11): e101573, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32323871

RESUMEN

High expression of 2',5'-oligoadenylate synthetase 1 (OAS1), which adds AMP residues in 2',5' linkage to a variety of substrates, is observed in many cancers as a part of the interferon-related DNA damage resistance signature (IRDS). Poly(ADP-ribose) (PAR) is rapidly synthesized from NAD+ at sites of DNA damage to facilitate repair, but excessive PAR synthesis due to extensive DNA damage results in cell death by energy depletion and/or activation of PAR-dependent programmed cell death pathways. We find that OAS1 adds AMP residues in 2',5' linkage to PAR, inhibiting its synthesis in vitro and reducing its accumulation in cells. Increased OAS1 expression substantially improves cell viability following DNA-damaging treatments that stimulate PAR synthesis during DNA repair. We conclude that high expression of OAS1 in cancer cells promotes their ability to survive DNA damage by attenuating PAR synthesis and thus preventing cell death.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/biosíntesis , Daño del ADN , Regulación Enzimológica de la Expresión Génica , Poli ADP Ribosilación , 2',5'-Oligoadenilato Sintetasa/genética , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Muerte Celular , Línea Celular Transformada , Humanos
2.
Nat Rev Neurosci ; 13(5): 325-35, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22395806

RESUMEN

Ageing leads to a functional deterioration of many brain systems, including the circadian clock--an internal time-keeping system that generates ∼24-hour rhythms in physiology and behaviour. Numerous clinical studies have established a direct correlation between abnormal circadian clock functions and the severity of neurodegenerative and sleep disorders. Latest data from experiments in model organisms, gene expression studies and clinical trials imply that dysfunctions of the circadian clock contribute to ageing and age-associated pathologies, thereby suggesting a functional link between the circadian clock and age-associated decline of brain functions. Potential molecular mechanisms underlying this link include the circadian control of physiological processes such as brain metabolism, reactive oxygen species homeostasis, hormone secretion, autophagy and stem cell proliferation.


Asunto(s)
Envejecimiento/patología , Encéfalo/patología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Envejecimiento/fisiología , Animales , Encéfalo/fisiología , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/fisiopatología , Humanos
3.
FASEB J ; 20(3): 530-2, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16507766

RESUMEN

The basic helix-loop-helix (bHLH) -PAS domain containing transcription factors CLOCK and BMAL1 are two major components of the circadian molecular oscillator. It is known that the CLOCK/BMAL1 complex positively regulates the activity of E-box containing promoters. Here we demonstrate that the CLOCK/BMAL1 complex can also suppress the activity of some promoters upon its interaction with CRYPTOCHROME (CRY). Such a dual function of the circadian transcriptional complex provides a mechanistic explanation for the unpredicted pattern of circadian gene expression in the tissues of Bmal1 null mice. We speculate that the switch from transcriptional activation to transcriptional repression may provide a highly efficient mechanism for circadian control of gene expression. We also show that CLOCK/BMAL1 can interfere with promoter regulation by other, non-circadian, transcription factors including N-MYC and ETS, leading to attenuation or abrogation of transcription of CLOCK/BMAL1-controlled stress-induced genes. We propose that, based upon these results, both circadian repression and activation of the transcription of different target genes are required for circadian responses to various external stimuli, including genotoxic stress induced by anticancer treatment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Ritmo Circadiano/fisiología , Flavoproteínas/fisiología , Regulación de la Expresión Génica/fisiología , Transactivadores/fisiología , Activación Transcripcional/fisiología , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas CLOCK , Proteínas de Ciclo Celular , Ritmo Circadiano/genética , Cruzamientos Genéticos , Criptocromos , Flavoproteínas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Genes Reporteros , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Genéticos , Complejos Multiproteicos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Proteínas Circadianas Period , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-ets/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Proteínas Recombinantes de Fusión/fisiología , Estrés Fisiológico/genética , Estrés Fisiológico/metabolismo , Transactivadores/deficiencia , Transactivadores/genética , Activación Transcripcional/genética
4.
Aging (Albany NY) ; 6(8): 675-89, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25239872

RESUMEN

The mTOR signaling pathway modulates metabolic processes with respect to nutrient availability and other growth-related cues. According to the existing paradigm, mTOR complex 1 (mTORC1) activityin vivo is induced by food and gradually decreases during fasting. We found that mTORC1 activity is controlled by an internal clock mechanism different from the known light-entrainable circadian clock. We observed 24-hr rhythms in phosphorylation of mTORC1 downstream targets, which were entrained by food, persisted during fasting and could be uncoupled from oscillating expression of the canonical circadian clock genes. Furthermore, these rhythms were present in tissues of mice with disrupted light-entrainable circadian clock. We propose tissue-specific rhythms in the expression of tor and its negative regulator deptor as the molecular mechanism of the mTORC1 activity oscillation. Our data demonstrate the existence of at least two independent molecular circadian clocks: one providing metabolic adaptation to periodic light/darkness and the other - to feeding.


Asunto(s)
Relojes Biológicos/fisiología , Conducta Alimentaria/fisiología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Hígado/metabolismo , Ratones , Fosforilación/fisiología
5.
Aging (Albany NY) ; 6(1): 48-57, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24481314

RESUMEN

The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1-/- mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Envejecimiento/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Envejecimiento/genética , Animales , Proliferación Celular , Células Cultivadas , Ritmo Circadiano , Inhibidores Enzimáticos/farmacología , Fibroblastos/enzimología , Genotipo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pulmón/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/metabolismo , Fenotipo , Fosforilación , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Factores de Tiempo
6.
Cell Cycle ; 10(23): 4162-9, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22101268

RESUMEN

Deficiency of the circadian clock transcriptional factor BMAL1 results in the development of premature aging in mice. In agreement with the accelerated aging phenotype, we observed an increase in the number of senescent cells in different tissues (lungs, liver and spleen) of Bmal1(-/-) mice, which suggests the important role of BMAL1 in the control of senescence in vivo. However, no difference in the rate of proliferation and senescence between primary fibroblasts isolated from wild-type and Bmal1(-/-) mice has been detected, suggesting that BMAL1 does not play a significant role in replicative senescence in vitro. BMAL1 deficient fibroblasts had an increased sensitivity to hydrogen peroxide treatment, and reduced sensitivity to DNA damaging anticancer drugs etoposide and daunorubicin. Increased sensitivity of Bmal1(-/-) cells to oxidative stress was p53 independent and correlated with the disrupted regulation of reactive oxygen species (ROS) homeostasis in BMAL1 deficient cells: indeed, circadian oscillations of ROS level can be induced in wild-type but not in Bmal1(-/-) cells. We propose that BMAL1 is important for the regulation of oxidative stress and DNA damage responses, while deregulation of these processes upon BMAL1 deficiency leads to development of stress induced senescence in vivo.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Senescencia Celular , Relojes Circadianos , Daño del ADN , Estrés Oxidativo , Factores de Transcripción ARNTL/genética , Animales , Antineoplásicos/farmacología , Muerte Celular , Medio de Cultivo Libre de Suero/metabolismo , Daunorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Etopósido/farmacología , Fibroblastos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Homeostasis , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Especies Reactivas de Oxígeno , Factores de Tiempo
7.
Aging (Albany NY) ; 2(5): 285-97, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20519775

RESUMEN

Deficiency of the transcription factor BMAL1, a core component of the circadian clock, results in an accelerated aging phenotype in mice. The circadian clock regulates many physiological processes and was recently implicated in control of brain-based activities, such as memory formation and the regulation of emotions. Aging is accompanied by the decline in brain physiology, particularly decline in the response and adaptation to novelty. We investigated the role of the circadian clock in exploratory behavior and habituation to novelty using the open field paradigm. We found that mice with a deficiency of the circadian transcription factor BMAL1 display hyperactivity in novel environments and impaired intra- and intersession habituation, indicative of defects in short- and long-term memory formation. In contrast, mice double-deficient for the circadian proteins CRY1 and CRY2 (repressors of the BMAL1-mediated transcription) demonstrate reduced activity and accelerated habituation when compared to wild type mice. Mice with mutation in theClock gene (encoding the BMAL1 transcription partner) show normal locomotion, but increased rearing activity and impaired intersession habituation. BMAL1 is highly expressed in the neurons of the hippocampus - a brain region associated with spatial memory formation; BMAL1 deficiency disrupts circadian oscillation in gene expression and reactive oxygen species homeostasis in the brain, which may be among the possible mechanisms involved. Thus, we suggest that the BMAL1:CLOCK activity is critical for the proper exploratory and habituation behavior, and that the circadian clock prepares organism for a new round of everyday activities through optimization of behavioral learning.


Asunto(s)
Factores de Transcripción ARNTL/genética , Proteínas CLOCK/genética , Criptocromos/genética , Conducta Exploratoria/fisiología , Memoria/fisiología , Factores de Transcripción ARNTL/metabolismo , Envejecimiento/fisiología , Animales , Relojes Biológicos/genética , Proteínas CLOCK/metabolismo , Corteza Cerebral/metabolismo , Ritmo Circadiano/genética , Criptocromos/metabolismo , Habituación Psicofisiológica/genética , Hipocampo/metabolismo , Hipercinesia/genética , Ratones , Ratones Noqueados , Actividad Motora/genética , Especies Reactivas de Oxígeno/metabolismo
9.
Aging (Albany NY) ; 1(12): 979-87, 2009 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-20157581

RESUMEN

Deficiency of the circadian clock protein BMAL1 leads to premature aging and increased levels of reactivate oxygen species in several tissues of mice. In order to investigate the role of oxidative stress in accelerated aging and development of age-related pathologies, we continuously administered the antioxidant N-acetyl-L-cysteine toBmal1-deficient mice through their entire lifespan by supplementing drinking water. We found that the life long treatment with antioxidant significantly increased average and maximal lifespan and reduced the rate of age-dependent weight loss and development of cataracts. At the same time, it had no effect on time of onset and severity of other age-related pathologies characteristic of Bmal1-/- mice, such as joint ossification, reduced hair regrowth and sarcopenia. We conclude that chronic oxidative stress affects longevity and contributes to the development of at least some age-associated pathology, although ROS-independent mechanisms may also play a role. Our bioinformatics analysis identified the presence of a conservative E box element in the promoter regions of several genes encoding major antioxidant enzymes. We speculate that BMAL1 controls antioxidant defense by regulating the expression of major antioxidant enzymes.


Asunto(s)
Factores de Transcripción ARNTL/fisiología , Acetilcisteína/farmacología , Envejecimiento Prematuro/tratamiento farmacológico , Antioxidantes/farmacología , Longevidad/efectos de los fármacos , Factores de Transcripción ARNTL/genética , Envejecimiento Prematuro/genética , Animales , Artritis/genética , Artritis/prevención & control , Peso Corporal/efectos de los fármacos , Catalasa/genética , Catarata/genética , Catarata/prevención & control , Elementos E-Box/fisiología , Glutatión Peroxidasa/genética , Humanos , Longevidad/genética , Macaca mulatta , Masculino , Ratones , Osificación Heterotópica/genética , Osificación Heterotópica/prevención & control , Estrés Oxidativo/efectos de los fármacos , Pan troglodytes , Peroxirredoxinas/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética
10.
Cell Cycle ; 7(9): 1197-204, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18418054

RESUMEN

The mammalian circadian system has been implicated in the regulation of various biological processes including those involved in genotoxic stress responses and tumor suppression. Here we report that mice with the functional deficiency in circadian transcription factor CLOCK (Clock/Clock mutant mice) do not display predisposition to tumor formation both during their normal lifespan or when challenged by gamma- radiation. This phenotype is consistent with high apoptotic and low proliferation rate in lymphoid tissues of Clock mutant mice and is supported by the gene expression profiling of a number of apoptosis and cell cycle-related genes, as well as by growth inhibition of cells with CLOCK downregulation. At the same time, Clock mutant mice respond to low-dose irradiation by accelerating their aging program, and develop phenotypes that are reminiscent of those in Bmal1-deficient mice. Taken together, our results demonstrate the dichotomy in biological consequences of the disruption of the circadian clock with respect to ageing and cancer. They also highlight the existence of a complex interconnection between ageing, carcinogenesis and individual components of the circadian clock machinery.


Asunto(s)
Envejecimiento/genética , Transformación Celular Neoplásica/genética , Trastornos Cronobiológicos/genética , Ritmo Circadiano/genética , Mutación/genética , Transactivadores/genética , Envejecimiento/metabolismo , Envejecimiento/efectos de la radiación , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Animales , Apoptosis/genética , Apoptosis/efectos de la radiación , Proteínas CLOCK , Proliferación Celular/efectos de la radiación , Transformación Celular Neoplásica/metabolismo , Trastornos Cronobiológicos/metabolismo , Trastornos Cronobiológicos/fisiopatología , Regulación hacia Abajo/genética , Regulación hacia Abajo/efectos de la radiación , Femenino , Rayos gamma/efectos adversos , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Predisposición Genética a la Enfermedad/genética , Inmunidad Innata/genética , Inmunidad Innata/efectos de la radiación , Tejido Linfoide/metabolismo , Tejido Linfoide/efectos de la radiación , Masculino , Ratones , Fenotipo
11.
Genes Dev ; 20(14): 1868-73, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16847346

RESUMEN

Mice deficient in the circadian transcription factor BMAL1 (brain and muscle ARNT-like protein) have impaired circadian behavior and demonstrate loss of rhythmicity in the expression of target genes. Here we report that Bmal1(-/-) mice have reduced lifespans and display various symptoms of premature aging including sarcopenia, cataracts, less subcutaneous fat, organ shrinkage, and others. The early aging phenotype correlates with increased levels of reactive oxygen species in some tissues of the Bmal1(-/- )animals. These findings, together with data on CLOCK/BMAL1-dependent control of stress responses, may provide a mechanistic explanation for the early onset of age-related pathologies in the absence of BMAL1.


Asunto(s)
Envejecimiento Prematuro/genética , Envejecimiento/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ritmo Circadiano/genética , Factores de Transcripción ARNTL , Tejido Adiposo/crecimiento & desarrollo , Tejido Adiposo/patología , Envejecimiento Prematuro/fisiopatología , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Peso Corporal , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/patología , Tamaño de los Órganos/genética , Especies Reactivas de Oxígeno/metabolismo
12.
Cell Cycle ; 5(8): 890-5, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16628007

RESUMEN

Mammalian CLOCK(NPAS2), BMAL1 and CRYPTOCHROMEs are core components of the circadian oscillatory mechanism. The active CLOCK/BMAL1 or NPAS2/BMAL1 complexes regulate expression of numerous genes including two Cryptochromes. The products of these genes, CRY1 and CRY2, in turn repress CLOCK/BMAL1 transcriptional activity by an unknown mechanism. We have examined the effect of CRYPTOCHROMEs on posttranslational modifications and intracellular distribution of endogenous and ectopically expressed CLOCK(NPAS2) and BMAL1 proteins. We found that ectopic coexpression with CRY led to stabilization and nuclear accumulation of unphosphorylated forms of the proteins, which directly correlated with the inhibition of their transcriptional activity. This effect was CRY-specific, as other known repressors of CLOCK/BMAL1 and NPAS2/ BMAL1 transcriptional activity were not able to induce similar effects. CRYs had no effect on CLOCK(NPAS2)/BMAL1 complex formation or its ability to bind DNA. Altogether, these results demonstrate that CRYs regulate the functional activity of circadian transcriptional complex at the posttranslational level. Importantly, the posttranslational modifications and intracellular distribution of CLOCK and BMAL1 proteins were critically impaired in the tissues of mice with targeted disruption of both Cry genes, thus confirming the suggested role of CRY in clock function in vivo. Based on these findings we propose a modified model of the circadian transcriptional control, which implies CRY-mediated periodic rotation of transcriptionally active and inactive forms of CLOCK/BMAL1 on the promoter. This model provides mechanistic explanation for previously reported dual functional activity of CLOCK/BMAL1 and highlights the involvement of the circadian system in modulating the organism's response to various types of genotoxic stress, including chemotherapy and radiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Flavoproteínas/metabolismo , Proteínas del Tejido Nervioso/fisiología , Procesamiento Proteico-Postraduccional , Factores de Transcripción ARNTL , Animales , Relojes Biológicos , Ritmo Circadiano , Criptocromos , Humanos , Ratones , Ratones Endogámicos C57BL
13.
Cell Cycle ; 4(10): 1403-10, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16138011

RESUMEN

Many viruses encode anti-apoptotic proteins that have been used as valuable tools for identification and analysis of key cellular regulators of programmed cell death. Here we demonstrate that the poliovirus protein 3A, previously shown to exhibit anti-apoptotic activity, binds and inactivates LIS1, a component of the dynein/dynactin motor complex, encoded by the gene mutated in patients with type I lissencephaly ("smooth brain"), thereby causing deregulation of endoplasmatic reticilum-to-Golgi vesicular transport, resulting in rapid disappearance of short-living receptors from the plasma membrane and loss of cell sensitivity to TNF and interferon. Truncated derivatives of LIS1, acting in a dominant negative manner, cause similar effects. However, 3A, being an endoplasmic reticulum-bound protein, locks Golgi-targeted YFP in the endoplasmatic reticilum, while expression of LIS1 mutants results in a dispersed cytoplasmic localization of the reporter protein. LIS1 dysfunction caused by ectopic expressing 3A or LIS1 mutants, as well as by overexpression of wild type LIS1, leads to cell blocking at the postmitotic stage associated with inability to undergo cytokinesis. Thus, the use of poliovirus protein as a research tool allowed us to reveal the role of cellular protein LIS1 in membrane protein trafficking, maintenance of Golgi integrity, surface presentation of unstable receptors, cell sensitivity to TNF-induced apoptosis and cell cycle progression.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Núcleo Viral/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa , Animales , División Celular , Línea Celular , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Mutación/genética , Poliovirus , Unión Proteica , Transporte de Proteínas , Proteínas del Núcleo Viral/genética
14.
Genes Dev ; 17(15): 1921-32, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12897057

RESUMEN

Mammalian CLOCK and BMAL1 are two members of bHLH-PAS-containing family of transcription factors that represent the positive elements of circadian autoregulatory feedback loop. In the form of a heterodimer, they drive transcription from E-box enhancer elements in the promoters of responsive genes. We have examined abundance, posttranslational modifications, cellular localization of endogenous and ectopically expressed CLOCK and BMAL1 proteins. Nuclear/cytoplasm distribution of CLOCK was found to be under circadian regulation. Analysis of subcellular localization of CLOCK in embryo fibroblasts of mice carrying different germ-line circadian mutations showed that circadian regulation of nuclear accumulation of CLOCK is BMAL1-dependent. Formation of CLOCK/BMAL1 complex following ectopic coexpression of both proteins is followed by their codependent phosphorylation, which is tightly coupled to CLOCK nuclear translocation and degradation. This binding-dependent coregulation is specific for CLOCK/BMAL1 interaction, as no other PAS domain protein that can form a complex with either CLOCK or BMAL1 was able to induce similar effects. Importantly, all posttranslational events described in our study are coupled with active transactivation complex formation, which argues for their significant functional role. Altogether, these results provide evidence for an additional level of circadian system control, which is based on regulation of transcriptional activity or/and availability of CLOCK/BMAL1 complex.


Asunto(s)
Ritmo Circadiano , Transactivadores/metabolismo , Factores de Transcripción/fisiología , Células 3T3 , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Western Blotting , Proteínas CLOCK , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dimerización , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación , Oscilometría , Fosforilación , Plásmidos/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Factores de Tiempo , Activación Transcripcional , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA