Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35743115

RESUMEN

In the fight against prostate cancer (PCa), TRPM8 is one of the most promising clinical targets. Indeed, several studies have highlighted that TRPM8 involvement is key in PCa progression because of its impact on cell proliferation, viability, and migration. However, data from the literature are somewhat contradictory regarding the precise role of TRPM8 in prostatic carcinogenesis and are mostly based on in vitro studies. The purpose of this study was to clarify the role played by TRPM8 in PCa progression. We used a prostate orthotopic xenograft mouse model to show that TRPM8 overexpression dramatically limited tumor growth and metastasis dissemination in vivo. Mechanistically, our in vitro data revealed that TRPM8 inhibited tumor growth by affecting the cell proliferation and clonogenic properties of PCa cells. Moreover, TRPM8 impacted metastatic dissemination mainly by impairing cytoskeleton dynamics and focal adhesion formation through the inhibition of the Cdc42, Rac1, ERK, and FAK pathways. Lastly, we proved the in vivo efficiency of a new tool based on lipid nanocapsules containing WS12 in limiting the TRPM8-positive cells' dissemination at metastatic sites. Our work strongly supports the protective role of TRPM8 on PCa progression, providing new insights into the potential application of TRPM8 as a therapeutic target in PCa treatment.


Asunto(s)
Neoplasias de la Próstata , Canales Catiónicos TRPM , Animales , Carcinogénesis/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Metástasis de la Neoplasia/patología , Próstata/patología , Neoplasias de la Próstata/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
2.
Biochem J ; 476(21): 3281-3293, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31652305

RESUMEN

TMEM165 was highlighted in 2012 as the first member of the Uncharacterized Protein Family 0016 (UPF0016) related to human glycosylation diseases. Defects in TMEM165 are associated with strong Golgi glycosylation abnormalities. Our previous work has shown that TMEM165 rapidly degrades with supraphysiological manganese supplementation. In this paper, we establish a functional link between TMEM165 and SPCA1, the Golgi Ca2+/Mn2+ P-type ATPase pump. A nearly complete loss of TMEM165 was observed in SPCA1-deficient Hap1 cells. We demonstrate that TMEM165 was constitutively degraded in lysosomes in the absence of SPCA1. Complementation studies showed that TMEM165 abundance was directly dependent on SPCA1's function and more specifically its capacity to pump Mn2+ from the cytosol into the Golgi lumen. Among SPCA1 mutants that differentially impair Mn2+ and Ca2+ transport, only the Q747A mutant that favors Mn2+ pumping rescues the abundance and Golgi subcellular localization of TMEM165. Interestingly, the overexpression of SERCA2b also rescues the expression of TMEM165. Finally, this paper highlights that TMEM165 expression is linked to the function of SPCA1.


Asunto(s)
Antiportadores/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Antiportadores/genética , Calcio/metabolismo , ATPasas Transportadoras de Calcio/genética , Proteínas de Transporte de Catión/genética , Citosol/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Manganeso/metabolismo , Mutación , Proteolisis , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
3.
Pflugers Arch ; 469(12): 1567-1577, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28849300

RESUMEN

Pancreatic cancer is characterized by a massive fibrosis (desmoplasia), which is primarily caused by activated pancreatic stellate cells (PSCs). This leads to a hypoxic tumor microenvironment further reinforcing the activation of PSCs by stimulating their secretion of growth factors and chemokines. Since many of them elicit their effects via G-protein-coupled receptors (GPCRs), we tested whether TRPC6 channels, effector proteins of many G-protein-coupled receptor pathways, are required for the hypoxic activation of PSCs. Thus far, the function of ion channels in PSCs is virtually unexplored. qPCR revealed TRPC6 channels to be one of the most abundant TRPC channels in primary cultures of murine PSCs. TRPC6 channel function was assessed by comparing PSCs from TRPC6-/- mice and wildtype (wt) littermates. Cell migration, Ca2+ signaling, and cytokine secretion were analyzed as readout for PSC activation. Hypoxia was induced by incubating PSCs for 24 h in 1% O2 or chemically with dimethyloxalylglycine (DMOG). PSCs migrate faster in response to hypoxia. Due to reduced autocrine stimulation, TRPC6-/- PSCs fail to increase their rate of migration to the same level as wt PSCs under hypoxic conditions. This defect could not be overcome by the stimulation with platelet-derived growth factor. In line with these results, calcium influx is increased in wt but not TRPC6-/- PSCs under hypoxia. We conclude that TRPC6 channels of PSCs are major effector proteins in an autocrine stimulation pathway triggered by hypoxia.


Asunto(s)
Células Estrelladas Pancreáticas/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Hipoxia de la Célula , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Noqueados , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Canal Catiónico TRPC6 , Microambiente Tumoral/fisiología
4.
Biochim Biophys Acta ; 1848(10 Pt B): 2532-46, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25450339

RESUMEN

Apoptosis, a type of genetically controlled cell death, is a fundamental cellular mechanism utilized by multicellular organisms for disposal of cells that are no longer needed or potentially detrimental. Given the crucial role of apoptosis in physiology, deregulation of apoptotic machinery is associated with various diseases as well as abnormalities in development. Acquired resistance to apoptosis represents the common feature of most and perhaps all types of cancer. Therefore, repairing and reactivating apoptosis represents a promising strategy to fight cancer. Accumulated evidence identifies ion channels as essential regulators of apoptosis. However, the contribution of specific ion channels to apoptosis varies greatly depending on cell type, ion channel type and intracellular localization, pathology as well as intracellular signaling pathways involved. Here we discuss the involvement of major types of ion channels in apoptosis regulation. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Asunto(s)
Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Canales Iónicos/metabolismo , Neoplasias/genética , Transducción de Señal/genética , Calcio/metabolismo , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Cloruros/metabolismo , Humanos , Canales Iónicos/clasificación , Canales Iónicos/genética , Transporte Iónico , Invasividad Neoplásica , Neoplasias/metabolismo , Neoplasias/patología , Especificidad de Órganos , Potasio/metabolismo , Sodio/metabolismo
5.
Biochim Biophys Acta ; 1843(10): 2263-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24583265

RESUMEN

The store-operated calcium channels (SOCs) represent one of the major calcium-entry pathways in non-excitable cells. SOCs and in particular their major components ORAI1 and STIM1 have been shown to be implicated in a number of physiological and pathological processes such as apoptosis, proliferation and invasion. Here we demonstrate that ORAI1 and STIM1 mediate store-operated calcium entry (SOCE) in pancreatic adenocarcinoma cell lines. We show that both ORAI1 and STIM1 play pro-survival anti-apoptotic role in pancreatic adenocarcinoma cell lines, as siRNA-mediated knockdown of ORAI1 and/or STIM1 increases apoptosis induced by chemotherapy drugs 5-fluorouracil (5-FU) or gemcitabine. We also demonstrate that both 5-FU and gemcitabine treatments increase SOCE in Panc1 pancreatic adenocarcinoma cell line via upregulation of ORAI1 and STIM1. Altogether our results reveal the novel calcium-dependent mechanism of action of the chemotherapy drugs 5-FU and gemcitabine and emphasize the anti-apoptotic role of ORAI1 and STIM1 in pancreatic adenocarcinoma cells. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Asunto(s)
Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Antineoplásicos/farmacología , Apoptosis , Canales de Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Resistencia a Antineoplásicos/genética , Fluorouracilo/farmacología , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Molécula de Interacción Estromal 1 , Gemcitabina
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166717, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37062452

RESUMEN

Golgi cation homeostasis is known to be crucial for many cellular processes including vesicular fusion events, protein secretion, as well as for the activity of Golgi glycosyltransferases and glycosidases. TMEM165 was identified in 2012 as the first cation transporter related to human glycosylation diseases, namely the Congenital Disorders of Glycosylation (CDG). Interestingly, divalent manganese (Mn) supplementation has been shown to suppress the observed glycosylation defects in TMEM165-deficient cell lines, thus suggesting that TMEM165 is involved in cellular Mn homeostasis. This paper demonstrates that the origin of the Golgi glycosylation defects arises from impaired Golgi Mn homeostasis in TMEM165-depleted cells. We show that Mn supplementation fully rescues the Mn content in the secretory pathway/organelles of TMEM165-depleted cells and hence the glycosylation process. Strong cytosolic and organellar Mn accumulations can also be observed in TMEM165- and SPCA1-depleted cells upon incubation with increasing Mn concentrations, thus demonstrating the crucial involvement of these two proteins in cellular Mn homeostasis. Interestingly, our results show that the cellular Mn homeostasis maintenance in control cells is correlated with the presence of TMEM165 and that the Mn-detoxifying capacities of cells, through the activity of SPCA1, rely on the Mn-induced degradation mechanism of TMEM165. Finally, this paper highlights that TMEM165 is essential in secretory pathway/organelles Mn homeostasis maintenance to ensure both Golgi glycosylation enzyme activities and cytosolic Mn detoxification.


Asunto(s)
Proteínas de Transporte de Catión , Manganeso , Humanos , Manganeso/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Antiportadores/metabolismo , Aparato de Golgi/metabolismo , Homeostasis
7.
JCI Insight ; 7(17)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35917173

RESUMEN

The sarcoplasmic reticulum (SR) plays an important role in calcium homeostasis. SR calcium mishandling is described in pathological conditions, such as myopathies. Here, we investigated whether the nuclear receptor subfamily 1 group D member (NR1D1, also called REV-ERBα) regulates skeletal muscle SR calcium homeostasis. Our data demonstrate that NR1D1 deficiency in mice impaired sarco/endoplasmic reticulum calcium ATPase-dependent (SERCA-dependent) SR calcium uptake. NR1D1 acts on calcium homeostasis by repressing the SERCA inhibitor myoregulin through direct binding to its promoter. Restoration of myoregulin counteracted the effects of NR1D1 overexpression on SR calcium content. Interestingly, myoblasts from patients with Duchenne muscular dystrophy displayed lower NR1D1 expression, whereas pharmacological NR1D1 activation ameliorated SR calcium homeostasis and improved muscle structure and function in dystrophic mdx/Utr+/- mice. Our findings demonstrate that NR1D1 regulates muscle SR calcium homeostasis, pointing to its therapeutic potential for mitigating myopathy.


Asunto(s)
Calcio , Músculo Esquelético , Animales , Calcio/metabolismo , Homeostasis , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Retículo Sarcoplasmático/metabolismo
8.
Cancers (Basel) ; 13(10)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063470

RESUMEN

Activated pancreatic stellate cells (aPSCs), the crucial mediator of pancreatic desmoplasia, are characterized, among others, by high proliferative potential and abundant transforming growth factor ß1 (TGFß1) secretion. Over the past years, the involvement of Ca2+ channels in PSC pathophysiology has attracted great interest in pancreatic cancer research. We, thus, aimed to investigate the role of the Orai1 Ca2+ channel in these two PSC activation processes. Using the siRNA approach, we invalided Orai1 expression and assessed the channel functionality by Ca2+ imaging, the effect on aPSC proliferation, and TGFß1 secretion. We demonstrated the functional expression of the Orai1 channel in human aPSCs and its implication in the store-operated Ca2+ entry (SOCE). Orai1 silencing led to a decrease in aPSC proliferation, TGFß1 secretion, and AKT activation. Interestingly, TGFß1 induced a higher SOCE response by increasing Orai1 mRNAs and proteins and promoted both AKT phosphorylation and cell proliferation, abolished by Orai1 silencing. Together, our results highlight the role of Orai1-mediated Ca2+ entry in human aPSC pathophysiology by controlling cell proliferation and TGFß1 secretion through the AKT signaling pathway. Moreover, we showed a TGFß1-induced autocrine positive feedback loop by promoting the Orai1/AKT-dependent proliferation via the stimulation of Orai1 expression and function.

9.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119023, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798603

RESUMEN

Changes in cytosolic free Ca2+ concentration play a central role in many fundamental cellular processes including muscle contraction, neurotransmission, cell proliferation, differentiation, gene transcription and cell death. Many of these processes are known to be regulated by store-operated calcium channels (SOCs), among which ORAI1 is the most studied in cancer cells, leaving the role of other ORAI channels yet inadequately addressed. Here we demonstrate that ORAI3 channels are expressed in both normal (HPDE) and pancreatic ductal adenocarcinoma (PDAC) cell lines, where they form functional channels, their knockdown affecting store operated calcium entry (SOCE). More specifically, ORAI3 silencing increased SOCE in PDAC cell lines, while decreasing SOCE in normal pancreatic cell line. We also show the role of ORAI3 in proliferation, cell cycle, viability, mitotic catastrophe and cell death. Finally, we demonstrate that ORAI3 silencing impairs pancreatic tumor growth and induces cell death in vivo, suggesting that ORAI3 could represent a potential therapeutic target in PDAC treatment.


Asunto(s)
Canales de Calcio/metabolismo , Neoplasias Pancreáticas/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Apoptosis/genética , Calcio/metabolismo , Canales de Calcio/genética , Señalización del Calcio/fisiología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Silenciador del Gen/fisiología , Humanos , Mitosis/genética , Proteína ORAI1/metabolismo , Neoplasias Pancreáticas/metabolismo , ARN Interferente Pequeño/metabolismo , Neoplasias Pancreáticas
10.
Autophagy ; 14(1): 3-21, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28980859

RESUMEN

Autophagy is a cellular process in which the cell degrades and recycles its own constituents. Given the crucial role of autophagy in physiology, deregulation of autophagic machinery is associated with various diseases. Hence, a thorough understanding of autophagy regulatory mechanisms is crucially important for the elaboration of efficient treatments for different diseases. Recently, ion channels, mediating ion fluxes across cellular membranes, have emerged as important regulators of both basal and induced autophagy. However, the mechanisms by which specific ion channels regulate autophagy are still poorly understood, thus underscoring the need for further research in this field. Here we discuss the involvement of major types of ion channels in autophagy regulation.


Asunto(s)
Autofagia/fisiología , Canales Iónicos/fisiología , Animales , Humanos , Canales Iónicos/clasificación
11.
Sci Rep ; 7(1): 15896, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162859

RESUMEN

Despite the tremendous progress in medicine, cancer remains one of the most serious global health problems awaiting new effective therapies. Here we present ferroquine (FQ), the next generation antimalarial drug, as a promising candidate for repositioning as cancer therapeutics. We report that FQ potently inhibits autophagy, perturbs lysosomal function and impairs prostate tumor growth in vivo. We demonstrate that FQ negatively regulates Akt kinase and hypoxia-inducible factor-1α (HIF-1α) and is particularly effective in starved and hypoxic conditions frequently observed in advanced solid cancers. FQ enhances the anticancer activity of several chemotherapeutics suggesting its potential application as an adjuvant to existing anticancer therapy. Alike its parent compound chloroquine (CQ), FQ accumulates within and deacidifies lysosomes. Further, FQ induces lysosomal membrane permeabilization, mitochondrial depolarization and caspase-independent cancer cell death. Overall, our work identifies ferroquine as a promising new drug with a potent anticancer activity.


Asunto(s)
Aminoquinolinas/farmacología , Antimaláricos/farmacología , Antineoplásicos/farmacología , Compuestos Ferrosos/farmacología , Aminoquinolinas/química , Animales , Antimaláricos/química , Autofagia/efectos de los fármacos , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cloroquina/química , Cloroquina/farmacología , Femenino , Compuestos Ferrosos/química , Concentración de Iones de Hidrógeno , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Metalocenos , Ratones Desnudos , Neoplasias/patología , Permeabilidad , Estrés Fisiológico , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Front Physiol ; 4: 272, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24106480

RESUMEN

Autophagy, or cellular self-eating, is a tightly regulated cellular pathway the main purpose of which is lysosomal degradation and subsequent recycling of cytoplasmic material to maintain normal cellular homeostasis. Defects in autophagy are linked to a variety of pathological states, including cancer. Cancer is the disease associated with abnormal tissue growth following an alteration in such fundamental cellular processes as apoptosis, proliferation, differentiation, migration and autophagy. The role of autophagy in cancer is complex, as it can promote both tumor prevention and survival/treatment resistance. It's now clear that modulation of autophagy has a great potential in cancer diagnosis and treatment. Recent findings identified intracellular calcium as an important regulator of both basal and induced autophagy. Calcium is a ubiquitous secondary messenger which regulates plethora of physiological and pathological processes such as aging, neurodegeneration and cancer. The role of calcium and calcium-permeable channels in cancer is well-established, whereas the information about molecular nature of channels regulating autophagy and the mechanisms of this regulation is still limited. Here we review existing mechanisms of autophagy regulation by calcium and calcium-permeable ion channels. Furthermore, we will also discuss some calcium-permeable channels as the potential new candidates for autophagy regulation. Finally we will propose the possible link between calcium permeable channels, autophagy and cancer progression and therapeutic response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA