Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Neurosci ; 18: 1380171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650618

RESUMEN

Periaqueductal gray (PAG), an integration center for neuronal signals, is located in the midbrain and regulates multiple physiological and pathological behaviors, including pain, defensive and aggressive behaviors, anxiety and depression, cardiovascular response, respiration, and sleep-wake behaviors. Due to the different neuroanatomical connections and functional characteristics of the four functional columns of PAG, different subregions of PAG synergistically regulate various instinctual behaviors. In the current review, we summarized the role and possible neurobiological mechanism of different subregions of PAG in the regulation of pain, defensive and aggressive behaviors, anxiety, and depression from the perspective of the up-down neuronal circuits of PAG. Furthermore, we proposed the potential clinical applications of PAG. Knowledge of these aspects will give us a better understanding of the key role of PAG in physiological and pathological behaviors and provide directions for future clinical treatments.

2.
CNS Neurosci Ther ; 29(12): 4147-4159, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37424163

RESUMEN

OBJECTIVE: The lateral periaqueductal gray (LPAG), which mainly contains glutamatergic neurons, plays an important role in social responses, pain, and offensive and defensive behaviors. Currently, the whole-brain monosynaptic inputs to LPAG glutamatergic neurons are unknown. This study aims to explore the structural framework of the underlying neural mechanisms of LPAG glutamatergic neurons. METHODS: This study used retrograde tracing systems based on the rabies virus, Cre-LoxP technology, and immunofluorescence analysis. RESULTS: We found that 59 nuclei projected monosynaptic inputs to the LPAG glutamatergic neurons. In addition, seven hypothalamic nuclei, namely the lateral hypothalamic area (LH), lateral preoptic area (LPO), substantia innominata (SI), medial preoptic area, ventral pallidum, posterior hypothalamic area, and lateral globus pallidus, projected most densely to the LPAG glutamatergic neurons. Notably, we discovered through further immunofluorescence analysis that the inputs to the LPAG glutamatergic neurons were colocalized with several markers related to important neurological functions associated with physiological behaviors. CONCLUSION: The LPAG glutamatergic neurons received dense projections from the hypothalamus, especially nuclei such as LH, LPO, and SI. The input neurons were colocalized with several markers of physiological behaviors, which show the pivotal role of glutamatergic neurons in the physiological behaviors regulation by LPAG.


Asunto(s)
Encéfalo , Sustancia Gris Periacueductal , Ratones , Animales , Encéfalo/fisiología , Neuronas/fisiología , Hipotálamo , Área Preóptica
3.
Front Pharmacol ; 14: 1098976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969831

RESUMEN

Sleep, torpor, and hibernation are three distinct hypometabolic states. However, they have some similar physiological features, such as decreased core body temperature and slowing heart rate. In addition, the accumulation of adenosine seems to be a common feature before entry into these three states, suggesting that adenosine and its receptors, also known as P1 receptors, may mediate the initiation and maintenance of these states. This review, therefore, summarizes the current research on the roles and possible neurobiological mechanisms of adenosine and P1 receptors in sleep, torpor, and hibernation. Understanding these aspects will give us better prospects in sleep disorders, therapeutic hypothermia, and aerospace medicine.

4.
iScience ; 24(4): 102264, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33688629

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with multiple direct and indirect cardiovascular complications. We sought to analyze the association of host co-morbidities (chronic respiratory illnesses, cardiovascular disease [CVD], hypertension or diabetes mellitus [DM]) with the acute cardiovascular complications associated with SARS-CoV-2 infection. Individual analyses of the majority of studies found median age was higher by ~10 years in patients with cardiovascular complications. Pooled analyses showed development of SARS-CoV-2 cardiovascular complications was significantly increased in patients with chronic respiratory illness (odds ratio (OR): 1.67 [1.48, 1.88]), CVD (OR: 3.37 [2.57, 4.43]), hypertension (OR: 2.68 [2.11, 3.41]), DM (OR: 1.60 [1.31, 1.95]) and male sex (OR: 1.31 [1.21, 1.42]), findings that were mostly conserved during sub-analysis of studies stratified into global geographic regions. Age, chronic respiratory illness, CVD, hypertension, DM, and male sex may represent prognostic factors for the development of cardiovascular complications in COVID-19 disease, highlighting the need for a multidisciplinary approach to chronic disease patient management.

5.
Int J Mol Med ; 31(2): 331-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23232972

RESUMEN

The accumulation of foam cells in atherosclerotic lesions is a hallmark of early-stage atherosclerosis. Kaempferol has been shown to inhibit oxidized low-density lipoprotein (oxLDL) uptake by macrophages; however, the underlying molecular mechanisms are not yet fully investigated. In this study, we shown that treatment with kaempferol markedly suppresses oxLDL-induced macrophage foam cell formation, which occurs due to a decrease in lipid accumulation and an increase in cholesterol efflux from THP-1-derived macrophages. Additionally, the kaempferol treatment of macrophages led to the downregulation of cluster of differentiation 36 (CD36) protein levels, the upregulation of ATP-binding cassette (ABC) transporter A1 (ABCA1), scavenger receptor class B type I (SR-BI) and ABCG1 protein levels, while no effects on scavenger receptor A (SR-A) expression were observed. Kaempferol had similar effects on the mRNA and protein expression of ABCA1, SR-BI, SR-A, CD36 and ABCG1. The reduced CD36 expression following kaempferol treatment involved the inhibition of c-Jun-activator protein-1 (AP-1) nuclear translocation. The inhibition of AP-1 using the inhibitor, SP600125, confirmed this involvement, as the AP-1 inhibition significantly augmented the kaempferol-induced reduction in CD36 expression. Accordingly, the kaempferol-mediated suppression of lipid accumulation in macrophages was also augmented by SP600125. The increased expression of ABCA1, SR-BI and ABCG1 following kaempferol treatment was accompanied by the enhanced protein expression of heme oxygenase-1 (HO-1). This increase was reversed following the knockdown of the HO-1 gene using small hairpin RNA (shRNA). Moreover, the kaempferol-mediated attenuation of lipid accumulation and the promotion of cholesterol efflux was also inhibited by HO-1 shRNA. In conclusion, the c-Jun-AP­1-dependent downregulation of CD36 and the HO-1-dependent upregulation of ABCG1, SR-BI and ABCA1 may mediate the beneficial effects of kaempferol on foam cell formation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Antígenos CD36/genética , Quempferoles/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/metabolismo , Antígenos CD36/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colesterol/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA