Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(6): 1970-1983, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36945740

RESUMEN

The utilization of stabilized DELLA proteins Rht-B1b and Rht-D1b was crucial for increasing wheat (Triticum aestivum) productivity during the Green Revolution. However, the underlying mechanisms remain to be clarified. Here, we cloned a gain-of-function allele of the GSK3/SHAGGY-like kinase-encoding gene GSK3 by characterizing a dwarf wheat mutant. Furthermore, we determined that GSK3 interacts with and phosphorylates the Green Revolution protein Rht-B1b to promote it to reduce plant height in wheat. Specifically, phosphorylation by GSK3 may enhance the activity and stability of Rht-B1b, allowing it to inhibit the activities of its target transcription factors. Taken together, we reveal a positive regulatory mechanism for the Green Revolution protein Rht-B1b by GSK3, which might have contributed to the Green Revolution in wheat.


Asunto(s)
Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Alelos
2.
Plant J ; 119(1): 478-489, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38659310

RESUMEN

The Q transcription factor plays important roles in improving multiple wheat domestication traits such as spike architecture, threshability and rachis fragility. However, whether and how it regulates abiotic stress adaptation remain unclear. We found that the transcriptional expression of Q can be induced by NaCl and abscisic acid treatments. Using the q mutants generated by CRISPR/Cas9 and Q overexpression transgenic lines, we showed that the domesticated Q gene causes a penalty in wheat salt tolerance. Then, we demonstrated that Q directly represses the transcription of TaSOS1-3B and reactive oxygen species (ROS) scavenging genes to regulate Na+ and ROS homeostasis in wheat. Furthermore, we showed that wheat salt tolerance protein TaWD40 interacts with Q to competitively interfere with the interaction between Q and the transcriptional co-repressor TaTPL. Taken together, our findings reveal that Q directly represses the expression of TaSOS1 and some ROS scavenging genes, thus causing a harmful effect on wheat salt tolerance.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno , Tolerancia a la Sal , Triticum , Triticum/genética , Triticum/fisiología , Triticum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología
3.
Planta ; 259(6): 127, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637411

RESUMEN

MAIN CONCLUSION: Overexpression of OsNRT1.1A promotes early heading and increases the tolerance in wheat under nitrogen deficiency conditions. The application of inorganic nitrogen (N) fertilizers is a major driving force for crop yield improvement. However, the overuse of fertilizers significantly raises production costs and leads to environmental problems, making it critical to enhance crop nitrogen use efficiency (NUE) for the sake of sustainable agriculture. In this study, we created a series of transgenic wheat lines carrying the rice OsNRT1.1A gene, which encodes a nitrate transporter, to investigate its possible application in improving NUE in wheat. The transgenic wheat exhibited traits such as early maturation that were highly consistent with the overexpression of OsNRT1.1A in Arabidopsis and rice. However, we also observed that overexpression of the OsNRT1.1A gene in wheat can facilitate the growth of roots under low N conditions but has no effect on other aspects of growth and development under normal N conditions. Thus, it may lead to the improvement of wheat low N tolerance,which is different from the effects reported in other plants. A field trial analysis showed that transgenic wheat exhibited increased grain yield per plant under low N conditions. Moreover, transcriptome analysis indicated that OsNRT1.1A increased the expression levels of N uptake and utilization genes in wheat, thereby promoting plant growth under low N conditions. Taken together, our results indicated that OsNRT1.1A plays an important role in improving NUE in wheat with low N availability.


Asunto(s)
Arabidopsis , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Triticum , Nitrógeno/metabolismo , Fertilizantes , Arabidopsis/metabolismo
4.
Theor Appl Genet ; 137(4): 92, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568320

RESUMEN

KEY MESSAGE: A chromosome fragment influencing wheat heading and grain size was identified using mapping of m406 mutant. The study of TaFPF1 in this fragment provides more insights into wheat yield improvement. In recent years, wheat production has faced formidable challenges driven by rapid population growth and climate change, emphasizing the importance of improving specific agronomic traits such as heading date, spike length, and grain size. To identify potential genes for improving these traits, we screened a wheat EMS mutant library and identified a mutant, designated m406, which exhibited a significantly delayed heading date compared to the wild-type. Intriguingly, the mutant also displayed significantly longer spike and larger grain size. Genetic analysis revealed that a single recessive gene was responsible for the delayed heading. Surprisingly, a large 46.58 Mb deletion at the terminal region of chromosome arm 2DS in the mutant was identified through fine mapping and fluorescence in situ hybridization. Thus, the phenotypes of the mutant m406 are controlled by a group of linked genes. This deletion encompassed 917 annotated high-confidence genes, including the previously studied wheat genes Ppd1 and TaDA1, which could affect heading date and grain size. Multiple genes in this region probably contribute to the phenotypes of m406. We further investigated the function of TaFPF1 using gene editing. TaFPF1 knockout mutants showed delayed heading and increased grain size. Moreover, we identified the direct upstream gene of TaFPF1 and investigated its relationship with other important flowering genes. Our study not only identified more genes affecting heading and grain development within this deleted region but also highlighted the potential of combining these genes for improvement of wheat traits.


Asunto(s)
Agricultura , Triticum , Triticum/genética , Hibridación Fluorescente in Situ , Genes Recesivos , Grano Comestible , Cromosomas
5.
J Integr Plant Biol ; 66(7): 1266-1269, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38888244

RESUMEN

Heading date, grain number per spike, and grain weight are crucial traits affecting yield and adaptability in wheat. The transcription factor TaMYB72 is an important regulator of wheat grain yield and its knock-out mutants can be used as germplasm resources for wheat improvement.


Asunto(s)
Grano Comestible , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
6.
Planta ; 259(1): 5, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37994951

RESUMEN

MAIN CONCLUSION: Characterization of the early leaf senescence mutant els3 and identification of its causal gene ELS3, which encodes an LRR-RLK protein in wheat. Leaf senescence is an important agronomic trait that affects both crop yield and quality. However, few senescence-related genes in wheat have been cloned and functionally analyzed. Here, we report the characterization of the early leaf senescence mutant els3 and fine mapping of its causal gene ELS3 in wheat. Compared with wild-type Yanzhan4110 (YZ4110), the els3 mutant had a decreased chlorophyll content and a degraded chloroplast structure after the flowering stage. Further biochemical assays in flag leaves showed that the superoxide anion and hydrogen peroxide contents increased, while the activities of antioxidant enzymes, including catalase, superoxide dismutase and glutathione reductase, decreased gradually after the flowering stage in the els3 mutant. To clone the causal gene underlying the phenotype of leaf senescence, a genetic map was constructed using 10,133 individuals of F2:3 populations, and ELS3 was located in a 2.52 Mb region on chromosome 2DL containing 16 putative genes. Subsequent sequence analysis and gene annotation identified only one SNP (C to T) in the first exon of TraesCS2D02G332700, resulting in an amino acid substitution (Pro329Ser), and TraesCS2D02G332700 was preliminarily considered as the candidate gene of ELS3. ELS3 encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) protein that is localized on the cell membrane. We also found that the transient expression of mutant TraesCS2D02G332700 can induce leaf senescence in N. benthamiana. Taken together, TraesCS2D02G332700 is likely to be the candidate gene of ELS3 and may have a function in regulating leaf senescence.


Asunto(s)
Pan , Triticum , Humanos , Triticum/genética , Senescencia de la Planta , Exones , Agricultura
7.
Planta ; 257(6): 107, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130977

RESUMEN

MAIN CONCLUSION: TabZIP60 is found to interact with TaCDPK30 and act as a positive regulator of ABA synthesis-mediated salt tolerance in wheat. Wheat basic leucine zipper (bZIP) transcription factor (TabZIP60) was previously found to act as a positive regulator of salt resistance. However, its molecular mechanism in response to salt stress in wheat is still unclear. In this study, TabZIP60 was found to interact with wheat calcium-dependent protein kinase (TaCDPK30), which belonged to group III of CDPK family, and was induced by salt, polyethylene glycol, and abscisic acid (ABA) treatments. This mutation of serine 110 in TabZIP60 resulted in no interaction with TaCDPK30. Moreover, TaCDPK30 was involved in interactions with wheat protein phosphatase 2C clade A (TaPP2CA116/TaPP2CA121). TabZIP60-overexpressing wheat plants showed increased salt tolerance, as exhibited by better growth status, higher soluble sugar, and lower malonaldehyde contents of transgenic plants than wild-type wheat cv. Kenong 199 under salt stress. Moreover, transgenic lines showed high ABA content by upregulating ABA synthesis-related gene expression levels. TabZIP60 protein could bind and interact with the promoter of the wheat nine-cis epoxycarotenoid dioxygenase (TaNCED2) gene. Furthermore, TabZIP60 upregulated several stress response gene expression levels, which could also increase the plant's ability to resist salt stress. Thus, these results suggest that TabZIP60 could function as a regulator of ABA synthesis-mediated salt tolerance through interacting with TaCDPK30 in wheat.


Asunto(s)
Tolerancia a la Sal , Triticum , Triticum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética
8.
New Phytol ; 240(5): 1913-1929, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37668262

RESUMEN

Plant height and grain size are two important agronomic traits that are closely related to crop yield. Numerous dwarf and grain-shape mutants have been studied to identify genes that can be used to increase crop yield and improve breeding programs. In this study, we characterized a dominant mutant, dwarf and round grain 1 (drg1-D), in bread wheat (Triticum aestivum L.). drg1-D plants exhibit multiple phenotypic changes, including dwarfism, round grains, and insensitivity to brassinosteroids (BR). Cell structure observation in drg1-D mutant plants showed that the reduced organ size is due to irregular cell shape. Using map-based cloning and verification in transgenic plants, we found that a Glu209Lys substitution in the DRG1 protein is responsible for the irregular cell size and arrangement in the drg1-D mutant. DRG1/TaACT7 encodes an actin family protein that is essential for polymerization stability and microfilament (MF) formation. In addition, the BR response and vesicular transport were altered by the abnormal actin cytoskeleton in drg1-D mutant plants. Our study demonstrates that DRG1/TaACT7 plays an important role in wheat cell shape determination by modulating actin organization and intracellular material transport, which could in the longer term provide tools to better understand the polymerization of actin and its assembly into filaments and arrays.


Asunto(s)
Actinas , Triticum , Actinas/metabolismo , Triticum/genética , Triticum/metabolismo , Pan , Fitomejoramiento , Grano Comestible/genética , Brasinoesteroides/metabolismo , Citoesqueleto de Actina
9.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298301

RESUMEN

Transposons (TEs) account for more than 80% of the wheat genome, the highest among all known crop species. They play an important role in shaping the elaborate genomic landscape, which is the key to the speciation of wheat. In this study, we analyzed the association between TEs, chromatin states, and chromatin accessibility in Aegilops tauschii, the D genome donor of bread wheat. We found that TEs contributed to the complex but orderly epigenetic landscape as chromatin states showed diverse distributions on TEs of different orders or superfamilies. TEs also contributed to the chromatin state and openness of potential regulatory elements, affecting the expression of TE-related genes. Some TE superfamilies, such as hAT-Ac, carry active/open chromatin regions. In addition, the histone mark H3K9ac was found to be associated with the accessibility shaped by TEs. These results suggest the role of diversiform TEs in shaping the epigenetic landscape and in gene expression regulation in Aegilops tauschii. This has positive implications for understanding the transposon roles in Aegilops tauschii or the wheat D genome.


Asunto(s)
Aegilops , Aegilops/genética , Genoma de Planta , Triticum/genética , Cromatina , Epigénesis Genética
10.
J Integr Plant Biol ; 65(7): 1605-1608, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37199274

RESUMEN

GLYCOGEN SYNTHASE KINASE 3 physically interacts with VRN1 and regulates its accumulation to mediate flowering in wheat.


Asunto(s)
Flores , Triticum , Flores/fisiología , Triticum/genética , Triticum/metabolismo , Glucógeno Sintasa Quinasa 3 , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
11.
New Phytol ; 233(3): 1414-1425, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800046

RESUMEN

Tillering is an important parameter of plant architecture in cereal crops. In this study, we identified the PHYTOCHROME-INTERACTING FACTOR-LIKE (PIL) family transcription factors as new repressors of tillering in cereal crops. Using biochemical and genetic approaches, we explore the roles of TaPIL1 in regulating wheat plant architecture. We found that the PIL protein TaPIL1 controls tiller number in wheat. Overexpression of TaPIL1 reduces wheat tiller number; additionally, overexpression of TaPIL1-SUPERMAN repression domain increases wheat tiller number. Furthermore, we show that TaPIL1 activates the transcriptional expression of wheat TEOSINTE BRANCHED1 (TaTB1); moreover, TaPIL1 physically interacts with wheat SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (TaSPL)3/17, which are activators of TaTB1 transcription. In rice, overexpression and loss-of-function mutations of OsPIL11 reduce or increase tiller number by regulating the expression of OsTB1. In Arabidopsis, we demonstrate that PHYTOCHROME-INTERACTING FACTOR 4 interacts with SPL9 to inhibit shoot branching. This study reveals that PIL family transcription factors directly interact with SPLs and play an important role in repressing tillering/branching in plants.


Asunto(s)
Oryza , Fitocromo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
BMC Genomics ; 22(1): 468, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162321

RESUMEN

BACKGROUND: Wheat is one of the most widely planted crops worldwide. The heading date is important for wheat environmental adaptability, as it not only controls flowering time but also determines the yield component in terms of grain number per spike. RESULTS: In this research, homozygous genotypes with early and late heading dates derived from backcrossed progeny were selected to conduct RNA-Seq analysis at the double ridge stage (W2.0) and androgynous primordium differentiation stage (W3.5) of the leaf and apical meristem, respectively. In total, 18,352 differentially expressed genes (DEGs) were identified, many of which are strongly associated with wheat heading date genes. Gene Ontology (GO) enrichment analysis revealed that carbohydrate metabolism, trehalose metabolic process, photosynthesis, and light reaction are closely related to the flowering time regulation pathway. Based on MapMan metabolic analysis, the DEGs are mainly involved in the light reaction, hormone signaling, lipid metabolism, secondary metabolism, and nucleotide synthesis. In addition, 1,225 DEGs were annotated to 45 transcription factor gene families, including LFY, SBP, and MADS-box transcription factors closely related to flowering time. Weighted gene co-expression network analysis (WGCNA) showed that 16, 336, 446, and 124 DEGs have biological connections with Vrn1-5 A, Vrn3-7B, Ppd-1D, and WSOC1, respectively. Furthermore, TraesCS2D02G181400 encodes a MADS-MIKC transcription factor and is co-expressed with Vrn1-5 A, which indicates that this gene may be related to flowering time. CONCLUSIONS: RNA-Seq analysis provided transcriptome data for the wheat heading date at key flower development stages of double ridge (W2.0) and androgynous primordium differentiation (W3.5). Based on the DEGs identified, co-expression networks of key flowering time genes in Vrn1-5 A, Vrn3-7B, WSOC1, and Ppd-1D were established. Moreover, we discovered a potential candidate flowering time gene, TraesCS2D02G181400. Taken together, these results serve as a foundation for further study on the regulatory mechanism of the wheat heading date.


Asunto(s)
Flores , Triticum , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Transcriptoma , Triticum/genética
13.
New Phytol ; 230(3): 988-1002, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33521967

RESUMEN

The domestication gene Q is largely responsible for the widespread cultivation of wheat because it confers multiple domestication traits. However, the underlying molecular mechanisms of how Q regulates these domestication traits remain unclear. In this study, we identify a Q-interacting protein TaLAX1, a basic helix-loop-helix transcription factor, through yeast two-hybrid assays. Using biochemical and genetic approaches, we explore the roles of TaLAX1 in regulating wheat domestication traits. Overexpression of TaLAX1 produces phenotypes, reminiscent of the q allele; loss-of-function Talax1 mutations confer compact spikes, largely similar to the Q-overexpression wheat lines. The two transcription factors TaLAX1 and Q disturb each other's activity to antagonistically regulate the expression of the lignin biosynthesis-related gene TaKNAT7-4D. More interestingly, a natural variation (InDel, +/- TATA), which occurs in the promoter of TaLAX1, is associated with the promoter activity difference between the D subgenome of bread wheat and its ancestor Aegilops tauschii accession T093. This study reveals that the transcription factor TaLAX1 physically interacts with Q to antagonistically regulate wheat domestication traits and a natural variation (InDel, +/- TATA) is associated with the diversification of TaLAX1 promoter activity.


Asunto(s)
Factores de Transcripción , Triticum , Pan , Grano Comestible , Morfogénesis , Factores de Transcripción/genética , Triticum/genética
14.
BMC Urol ; 21(1): 86, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051776

RESUMEN

BACKGROUND: Ureteral obturator hernia is a rare condition, usually found accidentally during imaging examinations, or found during surgery. Ureteral hernia can easily lead to ureteral obstruction and hydronephrosis. Long-term hydronephrosis may lead to kidney damage and infection, and eventually cause kidney failure. As of December 31, 2020, there are only 2 literature reports. CASE PRESENTATION: This article reports a 67-year-old female patient with no symptoms. The computed tomography (CT) scan of the urinary system to show the left kidney and ureter had hydrops. The CTU imaging of the urinary tract revealed the left ureter pelvis herniated into the parietal pelvic fascia was accompanied by tortuosity and left hydronephrosis. She underwent laparoscopic abdominal wall hernia repair on April 29, 2020, and she recovered well. CONCLUSIONS: Ureteral obturator hernia is an uncommon condition. The clinical symptoms are non-specific, including unclear abdominal pain, until the appearance of obstructive diseases of the urinary tract, such as renal insufficiency, urinary tract infection, kidney stones, and uremia. A comprehensive review of the literature shows that it is difficult to make an accurate diagnosis based on physical examination alone.Early urography can improve the possibility of accurate diagnosis. When a patient suffers from impaired renal function, timely surgical treatment can avoid deterioration of renal function.


Asunto(s)
Hernia Obturadora , Enfermedades Ureterales , Anciano , Femenino , Hernia Obturadora/diagnóstico por imagen , Hernia Obturadora/cirugía , Humanos , Enfermedades Ureterales/diagnóstico por imagen , Enfermedades Ureterales/cirugía
16.
Theor Appl Genet ; 132(11): 3115-3128, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31399755

RESUMEN

KEY MESSAGE: The quantitative trait loci (QTLs) for grain morphological traits were identified via nested association mapping and validated in a natural wheat population via haplotype analysis. Grain weight, one of the three most important components of crop yield, is largely determined by grain morphological traits. Dissecting the genetic bases of grain morphology could facilitate the improvement of grain weight and yield production. In this study, four wheat recombinant inbred line populations constructed by crossing the modern variety Yanzhan 1 with three semi-wild wheat varieties (i.e., Chayazheda, Yutiandaomai, and Yunnanxiaomai from Xinjiang, Tibet, and Yunnan, respectively) and one exotic accession Hussar from Great Britain were investigated for grain weight and eight morphological traits in seven environments. Eighty-eight QTLs for all measured traits were totally identified through nested association mapping utilizing 14,643 high-quality polymorphic single nucleotide polymorphism (SNP) markers generated by 90 K SNP array. Among them, 64 (72.7%) QTLs have the most favorable alleles donated by semi-wild wheat varieties. For 14 QTL clusters affecting at least two grain morphological traits, nine QTL clusters were located in similar position with known genes/QTL, and the other five were novel. Three important novel QTLs (i.e., qTGW-1B.1, qTGW-1B.2, and qTGW-1A.1) were further validated in a natural wheat population via haplotype analysis. The favorable haplotypes for these three QTLs might be used in marker-assisted selection for the improvement of wheat yield by modifying morphological traits.


Asunto(s)
Genética de Población , Sitios de Carácter Cuantitativo , Semillas/anatomía & histología , Triticum/genética , Alelos , China , Mapeo Cromosómico , Genotipo , Haplotipos , Fenotipo , Polimorfismo de Nucleótido Simple , Tibet , Reino Unido
17.
Nature ; 496(7443): 91-5, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23535592

RESUMEN

About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBDD). Wheat has since become a primary staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker's flour. Here we describe sequencing the Ae. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Ae. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species.


Asunto(s)
Adaptación Fisiológica/genética , Genoma de Planta/genética , Poaceae/genética , Triticum/genética , Brachypodium/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN/genética , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Hordeum/genética , Datos de Secuencia Molecular , Enfermedades de las Plantas , Poliploidía , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Triticum/fisiología
18.
Plant Physiol ; 174(3): 1779-1794, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28515146

RESUMEN

Early reproductive development in cereals is crucial for final grain number per spike and hence the yield potential of the crop. To date, however, no systematic analyses of gene expression profiles during this important process have been conducted for common wheat (Triticum aestivum). Here, we studied the transcriptome profiles at four stages of early wheat reproductive development, from spikelet initiation to floral organ differentiation. K-means clustering and stage-specific transcript identification detected dynamically expressed homeologs of important transcription regulators in spikelet and floral meristems that may be involved in spikelet initiation, floret meristem specification, and floral organ patterning, as inferred from their homologs in model plants. Small RNA transcriptome sequencing discovered key microRNAs that were differentially expressed during wheat inflorescence development alongside their target genes, suggesting that miRNA-mediated regulatory mechanisms for floral development may be conserved in cereals and Arabidopsis. Our analysis was further substantiated by the functional characterization of the ARGONAUTE1d (AGO1d) gene, which was initially expressed in stamen primordia and later in the tapetum during anther maturation. In agreement with its stage-specific expression pattern, the loss of function of the predominantly expressed B homeolog of AGO1d in a tetraploid durum wheat mutant resulted in smaller anthers with more infertile pollens than the wild type and a reduced grain number per spike. Together, our work provides a first glimpse of the gene regulatory networks in wheat inflorescence development that may be pivotal for floral and grain development, highlighting potential targets for genetic manipulation to improve future wheat yields.


Asunto(s)
Tipificación del Cuerpo/genética , Flores/genética , Perfilación de la Expresión Génica , Genes de Plantas , Genes Reguladores , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Triticum/genética , Secuencia de Bases , Análisis por Conglomerados , Fertilidad/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Organogénesis/genética , Polen/genética , Polen/crecimiento & desarrollo , Análisis de Secuencia de ARN , Tetraploidía
19.
Int J Mol Sci ; 19(3)2018 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-29534430

RESUMEN

Leaf senescence is an important agronomic trait that affects both crop yield and quality. In this study, we characterized a premature leaf senescence mutant of wheat (Triticum aestivum L.) obtained by ethylmethane sulfonate (EMS) mutagenesis, named m68. Genetic analysis showed that the leaf senescence phenotype of m68 is controlled by a single recessive nuclear gene. We compared the transcriptome of wheat leaves between the wild type (WT) and the m68 mutant at four time points. Differentially expressed gene (DEG) analysis revealed many genes that were closely related to senescence genes. Gene Ontology (GO) enrichment analysis suggested that transcription factors and protein transport genes might function in the beginning of leaf senescence, while genes that were associated with chlorophyll and carbon metabolism might function in the later stage. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the genes that are involved in plant hormone signal transduction were significantly enriched. Through expression pattern clustering of DEGs, we identified 1012 genes that were induced during senescence, and we found that the WRKY family and zinc finger transcription factors might be more important than other transcription factors in the early stage of leaf senescence. These results will not only support further gene cloning and functional analysis of m68, but also facilitate the study of leaf senescence in wheat.


Asunto(s)
Mutación , Desarrollo de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Transcriptoma , Triticum/genética , Genes Recesivos , Fenotipo , Hojas de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/crecimiento & desarrollo , Dedos de Zinc
20.
Biochem Biophys Res Commun ; 473(4): 1321-1327, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27091431

RESUMEN

Although bHLH transcription factors play important roles regulating plant development and abiotic stress response and tolerance, few functional studies have been performed in wheat. In this study, we isolated and characterized a bHLH gene, TabHLH39, from wheat. The TabHLH39 gene is located on wheat chromosome 5DL, and the protein localized to the nucleus and activated transcription. TabHLH39 showed variable expression in roots, stems, leaves, glumes, pistils and stamens and was induced by polyethylene glycol, salt and cold treatments. Further analysis revealed that TabHLH39 overexpression in Arabidopsis significantly enhanced tolerance to drought, salt and freezing stress during the seedling stage, which was also demonstrated by enhanced abiotic stress-response gene expression and changes to several physiological indices. Therefore, TabHLH39 has potential in transgenic breeding applications to improve abiotic stress tolerance in crops.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética , Triticum/fisiología , Mejoramiento Genético/métodos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA