RESUMEN
Classical bovine spongiform encephalopathy (BSE) in cattle was caused by the recycling and feeding of meat and bone meal contaminated with a transmissible spongiform encephalopathy (TSE) agent but its origin remains unknown. This study aimed to determine whether atypical scrapie could cause disease in cattle and to compare it with other known TSEs in cattle. Two groups of calves (five and two) were intracerebrally inoculated with atypical scrapie brain homogenate from two sheep with atypical scrapie. Controls were five calves intracerebrally inoculated with saline solution and one non-inoculated animal. Cattle were clinically monitored until clinical end-stage or at least 96 months post-inoculation (mpi). After euthanasia, tissues were collected for TSE diagnosis and potential transgenic mouse bioassay. One animal was culled with BSE-like clinical signs at 48 mpi. The other cattle either developed intercurrent diseases leading to cull or remained clinical unremarkable at study endpoint, including control cattle. None of the animals tested positive for TSEs by Western immunoblot and immunohistochemistry. Bioassay of brain samples from the clinical suspect in Ov-Tg338 and Bov-Tg110 mice was also negative. By contrast, protein misfolding cyclic amplification detected prions in the examined brains from atypical scrapie-challenged cattle, which had a classical BSE-like phenotype. This study demonstrates for the first time that a TSE agent with BSE-like properties can be amplified in cattle inoculated with atypical scrapie brain homogenate.
Asunto(s)
Enfermedades de los Bovinos , Encefalopatía Espongiforme Bovina , Priones , Scrapie , Enfermedades de las Ovejas , Ovinos , Animales , Bovinos , Ratones , Scrapie/metabolismo , Priones/genética , Encefalopatía Espongiforme Bovina/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Enfermedades de los Bovinos/metabolismo , Enfermedades de las Ovejas/diagnósticoRESUMEN
BACKGROUND: A study to investigate transmission of classical scrapie via goat milk was carried out in sheep: firstly, lambs were challenged orally with goat scrapie brain homogenate to confirm transmission of scrapie from goats to sheep. In the second study phase, milk from scrapie-infected goats was fed to lambs. Lambs were selected according to their prion protein gene (PRNP) genotype, which was either VRQ/VRQ or ARQ/ARQ, with or without additional polymorphisms at codon 141 (FF141, LF141 or LL141) of the ovine PRNP. This report describes the clinical, pathological and molecular phenotype of goat scrapie in those sheep that progressed to clinical end-stage. RESULTS: Ten sheep (six VRQ/VRQ and four ARQ/ARQ, of which three FF141 and one LL141) challenged with one of two scrapie brain homogenates, and six pairs of sheep (ARQ, of which five LL141 and seven LF141) fed milk from six different goats, developed clinical disease, which was characterised by a pruritic (all VRQ/VRQ and LL141 sheep) or a non-pruritic form (all LF141 and FF141 sheep). Immunohistochemical (IHC) examination revealed that the pattern of intra- and extracellular accumulation of disease-associated prion protein in the brain was also dependent on PRNP polymorphisms at codon 141, which was similar in VRQ and LL141 sheep but different from LF141 and FF141 sheep. The influence of codon 141 was also seen in discriminatory Western blot (WB), with LF141 and FF141 sheep showing a bovine spongiform encephalopathy-like profile (diminished reactivity with P4 antibody) on brain tissue. However, discriminatory WB in lymphoid tissues, and IHC pattern and profile both in lymphoid and brain tissue was consistent with classical scrapie in all sheep. CONCLUSIONS: This study provided further evidence that the clinical presentation and the pathological and molecular phenotypes of scrapie in sheep are influenced by PRNP polymorphisms, particularly at codon 141. Differences in the truncation of disease-associated prion protein between LL141 sheep and those carrying the F141 allele may be responsible for these observations.
Asunto(s)
Codón , Enfermedades de las Cabras/transmisión , Polimorfismo Genético , Proteínas Priónicas/genética , Scrapie/transmisión , Enfermedades de las Ovejas/transmisión , Animales , Susceptibilidad a Enfermedades/veterinaria , Femenino , Enfermedades de las Cabras/genética , Cabras , Masculino , Leche , Fenotipo , Proyectos Piloto , Ovinos , Enfermedades de las Ovejas/genéticaRESUMEN
Apart from prion protein genotype, the factors determining the host range and susceptiblity for specific transmissible spongiform encephalopathy agents remain unclear. It is known that bovine atypical L-BSE can transmit to a range of species including primates and humanised transgenic mice. It is important, therefore, that there is as broad an understanding as possible of how such isolates might present in food animal species and how robust they are on inter- and intra-species transmission to inform surveillance sytems and risk assessments. This paper demonstrates that L-BSE can be intracerebrally transmitted to sheep of several genotypes, with the exception of ARR/ARR animals. Positive animals mostly present with a cataplectic form of disease characterized by collapsing episodes and reduced muscle tone. PrP accumulation is confined to the nervous system, with the exception of one animal with lymphoreticular involvement. In Western blot there was maintenance of the low molecular mass and glycoform profile associated with L-BSE, irrespective of ovine host genotype, but there was a substantially higher N-terminal antibody signal relative to the core-specific antibody, which is similar to the ratio associated with classical scrapie. The disease phenotype was maintained on experimental subpassage, but with a shortened survival time indicative of an original species barrier and subsequent adaptation. Passive surveillance approaches would be unlikely to identify such cases as TSE suspects, but current statutory active screening methods would be capable of detecting such cases and classifying them as unusual and requiring further investigation if they were to occur in the field.
Asunto(s)
Encefalopatía Espongiforme Bovina/transmisión , Enfermedades de las Ovejas/transmisión , Animales , Western Blotting/veterinaria , Encéfalo/patología , Bovinos , Encefalopatía Espongiforme Bovina/diagnóstico , Encefalopatía Espongiforme Bovina/patología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Fenotipo , Ovinos , Enfermedades de las Ovejas/diagnóstico , Enfermedades de las Ovejas/mortalidad , Enfermedades de las Ovejas/patologíaRESUMEN
BACKGROUND: Previous studies confirmed that classical scrapie can be transmitted via milk in sheep. The current study aimed to investigate whether scrapie can also be transmitted via goat milk using in vivo (new-born lambs fed milk from scrapie-affected goats due to the unavailability of goat kids from guaranteed scrapie-free herds) and in vitro methods (serial protein misfolding cyclic amplification [sPMCA] on milk samples). RESULTS: In an initial pilot study, new-born lambs of two different prion protein gene (PRNP) genotypes (six VRQ/VRQ and five ARQ/ARQ) were orally challenged with 5 g brain homogenate from two scrapie-affected goats to determine susceptibility of sheep to goat scrapie. All sheep challenged with goat scrapie brain became infected based on the immunohistochemical detection of disease-associated PrP (PrP(sc)) in lymphoid tissue, with an ARQ/ARQ sheep being the first to succumb. Subsequent feeding of milk to eight pairs of new-born ARQ/ARQ lambs, with each pair receiving milk from a different scrapie-affected goat, resulted in scrapie in the six pairs that received the largest volume of milk (38-87 litres per lamb), whereas two pairs fed 8-9 litres per lamb, and an environmental control group raised on sheep milk from healthy ewes, did not show evidence of infection when culled at up to 1882 days of age. Infection in those 12 milk recipients occurred regardless of the clinical status, PrP(sc) distribution, caprine arthritis-encephalitis virus infection status and PRNP polymorphisms at codon 142 (II or IM) of the donor goats, but survival time was influenced by PRNP polymorphisms at codon 141. Serial PMCA applied to a total of 32 milk samples (four each from the eight donor goats collected throughout lactation) detected PrP(sc) in one sample each from two goats. CONCLUSIONS: The scrapie agent was present in the milk from infected goats and was able to transmit to susceptible species even at early preclinical stage of infection, when PrP(sc) was undetectable in the brain of the donor goats. Serial PMCA as a PrP(sc) detection method to assess the risk of scrapie transmission via milk in goats proved inefficient compared to the bioassay.
Asunto(s)
Leche , Scrapie/transmisión , Ovinos , Animales , Animales Recién Nacidos , Genotipo , Cabras , Proteínas Priónicas/genética , Análisis de SupervivenciaRESUMEN
BACKGROUND: Atypical bovine spongiform encephalopathies (BSEs), classified as H-type and L-type BSE based on the Western immunoblot profiles, are naturally occurring diseases in cattle, which are phenotypically different to classical BSE. Transmission studies in cattle using the intracerebral route resulted in disease where the phenotypes were maintained irrespective of BSE type but clinically affected cattle with a shorter survival time displayed a nervous form whereas cattle with a longer survival time displayed a dull form. A second transmission study is reported here where four cattle were intracerebrally inoculated with brain tissue from experimentally infected cattle presenting with either the nervous or dull form of H- or L-type BSE to determine whether the phenotype is maintained. RESULTS: The four inoculated cattle were culled at 16.5-19.5 months post inoculation after presenting with difficulty getting up, a positive scratch response (all) and dullness (three cattle), which was not observed in two non-inoculated control cattle, each housed with either group of inoculated cattle. Only the inoculated cattle had detectable prion protein in the brain based on immunohistochemical examination, and the Western immunoblot profile was consistent with the H-type or L-type BSE of the respective donor cattle. CONCLUSIONS: Second passage of H-type and L-type BSE in cattle produced a TSE where the majority of cattle displayed the dull form regardless of clinical disease form of the donor cattle. The pathological and molecular phenotypes of H- and L-type BSE were maintained.
Asunto(s)
Encefalopatía Espongiforme Bovina/patología , Animales , Western Blotting/veterinaria , Encéfalo/patología , Bovinos , Encefalopatía Espongiforme Bovina/diagnóstico , Encefalopatía Espongiforme Bovina/metabolismo , Encefalopatía Espongiforme Bovina/mortalidad , Encefalopatía Espongiforme Bovina/transmisión , Femenino , Masculino , Fenotipo , Análisis de SupervivenciaRESUMEN
BACKGROUND: Evidence for scrapie transmission from VRQ/VRQ ewes to lambs via milk was first reported in 2008 but in that study there were concerns that lateral transmission may have contributed to the high transmission rate observed since five control lambs housed with the milk recipients also became infected. This report provides further information obtained from two follow-up studies, one where milk recipients were housed separately after milk consumption to confirm the validity of the high scrapie transmission rate via milk and the second to assess any difference in infectivity from colostrum and subsequent milk. Protein misfolding cyclic amplification (PMCA) was also used to detect prion protein in milk samples as a comparison with the infectivity data and extended to milk samples from ewes without a VRQ allele. RESULTS: Seven pairs of lambs fed colostrum and milk individually from seven scrapie-affected sheep (pre-clinical or clinical) presented with disease-associated prion protein, PrPd, in rectal lymphoid tissue at 4-5 months of age. Five further pairs of lambs fed either colostrum or subsequent milk from five pre-clinical scrapie-affected sheep equally presented with PrPd in lymphoid tissue by 9 months of age. Nine sheep were lost due to intercurrent diseases but all remaining milk or colostrum recipients, including those in the original study with the lateral transmission controls, developed clinical signs of scrapie from 19 months of age and scrapie was confirmed by brain examination. Unexposed control sheep totalling 19 across all three studies showed no evidence of infection.Scrapie PrP was amplified repeatedly by PMCA in all tested milk samples from scrapie-affected VRQ/VRQ sheep, and in one scrapie-affected ARQ/ARQ sheep. By contrast, milk samples from five VRQ/VRQ and 11 ARQ/ARQ scrapie-free sheep did not have detectable scrapie PrP on repeated tests. CONCLUSIONS: Feeding of milk from scrapie-affected sheep results in a high transmission rate in VRQ/VRQ sheep and both colostrum and milk transmit scrapie. Detection of scrapie prion protein in individual milk samples from scrapie-affected ewes confirms PMCA as a valuable in vitro test.
Asunto(s)
Calostro/química , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Leche/química , Scrapie/transmisión , Animales , Animales Recién Nacidos , Femenino , Vivienda para Animales , Periodo de Incubación de Enfermedades Infecciosas , Leche/efectos adversos , Priones/análisis , OvinosRESUMEN
BACKGROUND: The majority of atypical bovine spongiform encephalopathy (BSE) cases so far identified worldwide have been detected by active surveillance. Consequently the volume and quality of material available for detailed characterisation is very limiting. Here we report on a small transmission study of both atypical forms, H- and L-type BSE, in cattle to provide tissue for test evaluation and research, and to generate clinical, molecular and pathological data in a standardised way to enable more robust comparison of the two variants with particular reference to those aspects most relevant to case ascertainment and confirmatory diagnosis within existing regulated surveillance programmes. RESULTS: Two groups of four cattle, intracerebrally inoculated with L-type or H-type BSE, all presented with a nervous disease form with some similarities to classical BSE, which progressed to a more dull form in one animal from each group. Difficulty rising was a consistent feature of both disease forms and not seen in two BSE-free, non-inoculated cattle that served as controls. The pathology and molecular characteristics were distinct from classical BSE, and broadly consistent with published data, but with some variation in the pathological characteristics. Both atypical BSE types were readily detectable as BSE by current confirmatory methods using the medulla brain region at the obex, but making a clear diagnostic distinction between the forms was not consistently straightforward in this brain region. Cerebellum proved a more reliable sample for discrimination when using immunohistochemistry. CONCLUSIONS: The prominent feature of difficulty rising in atypical BSE cases may explain the detection of naturally occurring cases in emergency slaughter cattle and fallen stock. Current confirmatory diagnostic methods are effective for the detection of such atypical cases, but consistently and correctly identifying the variant forms may require modifications to the sampling regimes and methods that are currently in use.
Asunto(s)
Encéfalo/patología , Encefalopatía Espongiforme Bovina/patología , Ácido 3-Hidroxibutírico/sangre , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Conducta Animal/fisiología , Bilirrubina/sangre , Western Blotting/veterinaria , Bovinos , Electrólitos/sangre , Encefalopatía Espongiforme Bovina/sangre , Encefalopatía Espongiforme Bovina/genética , Fibrinógeno/análisis , Globulinas/análisis , Glutatión Peroxidasa/sangre , Haptoglobinas/análisis , Inmunohistoquímica/veterinaria , Masculino , Albúmina Sérica/análisis , Urea/sangre , Vitamina E/sangreRESUMEN
Bacillus Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis (M. bovis), is the lead candidate vaccine for control of bovine tuberculosis (TB) in cattle. However, BCG vaccination sensitises cattle to bovine tuberculin, thus compromising the use of the current bovine TB surveillance tests. To address this, we have developed a diagnostic skin test that is not compromised by BCG vaccination and is able to detect BCG vaccinated animals that subsequently develop bovine TB following exposure to M. bovis. Building on previous work using 'in house' formulated protein cocktail reagents, we herein present test performance data for a single fusion protein (DST-F) containing the mycobacterial antigens ESAT-6, CFP-10 and Rv3615c formulated as a 'ready to use' reagent by a commercial manufacturer. Our results demonstrate that, unlike tuberculin reagents, a diagnostic skin test using DST-F maintained high specificity in BCG vaccinated animals. Furthermore, the DST-F skin test demonstrated a high relative sensitivity in identifying M. bovis infected animals, including those where BCG vaccination failed to prevent bovine TB pathology following experimental exposure to M. bovis. The DST-F is currently undergoing field trials in Great Britain to support its licensure and commercialisation.
Asunto(s)
Mycobacterium bovis , Tuberculosis Bovina , Animales , Antígenos Bacterianos , Vacuna BCG , Bovinos , Indicadores y Reactivos , Pruebas Cutáneas , Tuberculina , Tuberculosis Bovina/diagnóstico , Tuberculosis Bovina/prevención & control , Vacunación/veterinariaRESUMEN
To investigate the possibility of oral transmission of atypical scrapie in sheep and determine the distribution of infectivity in the animals' peripheral tissues, we challenged neonatal lambs orally with atypical scrapie; they were then killed at 12 or 24 months. Screening test results were negative for disease-specific prion protein in all but 2 recipients; they had positive results for examination of brain, but negative for peripheral tissues. Infectivity of brain, distal ileum, and spleen from all animals was assessed in mouse bioassays; positive results were obtained from tissues that had negative results on screening. These findings demonstrate that atypical scrapie can be transmitted orally and indicate that it has the potential for natural transmission and iatrogenic spread through animal feed. Detection of infectivity in tissues negative by current surveillance methods indicates that diagnostic sensitivity is suboptimal for atypical scrapie, and potentially infectious material may be able to pass into the human food chain.
Asunto(s)
Scrapie/transmisión , Animales , Animales Recién Nacidos , Encéfalo/parasitología , Encéfalo/patología , Ratones , Ratones Transgénicos , Scrapie/diagnóstico , OvinosRESUMEN
Bovine tuberculosis (bTB) is a disease of livestock with severe and worldwide economic, animal welfare and zoonotic consequences. Application of test-and-slaughter-based control polices reliant on tuberculin skin testing has been the mainstay of bTB control in cattle. However, little is known about the temporal development of the bovine tuberculin skin test response at the dermal sites of antigen injection. To fill this knowledge gap, we applied minimally-invasive sampling microneedles (SMNs) for intradermal sampling of interstitial fluid at the tuberculin skin test sites in Mycobacterium bovis BCG-vaccinated calves and determined the temporal dynamics of a panel of 15 cytokines and chemokines in situ and in the peripheral blood. The results reveal an orchestrated and coordinated cytokine and local chemokine response, identified IL-1RA as a potential soluble biomarker of a positive tuberculin skin response, and confirmed the utility of IFN-γ and IP-10 for bTB detection in blood-based assays. Together, the results highlight the utility of SMNs to identify novel biomarkers and provide mechanistic insights on the intradermal cytokine and chemokine responses associated with the tuberculin skin test in BCG-sensitized cattle.
Asunto(s)
Vacuna BCG/administración & dosificación , Citocinas/biosíntesis , Agujas , Tuberculina/administración & dosificación , Animales , BovinosRESUMEN
Classical scrapie is a prion disease of small ruminants, the infectious agent of which has been shown to be extremely persistent in the environment. Cleaning and disinfection (C&D) after a scrapie outbreak is currently recommended by many governments' veterinary advisors and implemented in most farms affected. Yet, the effectiveness of these procedures remains unclear. The aim of this study was to review existing literature and guidelines regarding farm C&D protocols following classical scrapie outbreaks and assess their effectiveness and the challenges that translation of policy and legislative requirements present at a practical level. A review of the literature was conducted to identify the on-farm C&D protocols used following outbreaks of scrapie, assess those materials with high risk for persistence of the scrapie agent on farms, and review the existing evidence of the effectiveness of recommended C&D protocols. An expert workshop was also organised in Great Britain (GB) to assess: the decision-making process used when implementing C&D protocols on GB farms, the experts' perceptions on the effectiveness of these protocols and changes needed, and their views on potential recommendations for policy and research. Outputs of the literature review revealed that the current recommended protocol for C&D [1â¯h treatment with sodium hypochlorite containing 20,000â¯ppm free chlorine or 2â¯M sodium hydroxide (NaOH)] is based on laboratory experiments. Only four field farm experiments have been conducted, indicating a lack of data on effectiveness of C&D protocols on farms by the re-occurrence of scrapie infection post re-stocking. Recommendations related to the control of outdoor environment, which are difficult and expensive to implement, vary between countries. The expert workshop concluded that there are no practical, cost-effective C&D alternatives to be considered at this time, with control therefore based on C&D only in combination with additional time restrictions on re-stocking and replacement with non-susceptible livestock or more genetically resistant types, where available. Participants agreed that C&D should still be completed on scrapie affected farms, as it is considered to be "good disease practice" and likely to reduce the levels of the prion protein. Participants felt that any additional protocols developed should not be "too prescriptive" (should not be written down in specific policies) because of significant variation in farm types, farm equipment and installations. Under this scenario, control of classical scrapie on farms should be designed with a level of C&D in combination with re-stocking temporal ban and replacement with livestock of limited susceptibility.
Asunto(s)
Brotes de Enfermedades , Desinfección/normas , Priones , Scrapie , Enfermedades de las Ovejas , Animales , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria , Guías como Asunto , Scrapie/epidemiología , Scrapie/prevención & control , Ovinos , Enfermedades de las Ovejas/epidemiología , Reino Unido/epidemiologíaRESUMEN
BACKGROUND: Atypical scrapie was first identified in Norwegian sheep in 1998 and has subsequently been identified in many countries. Retrospective studies have identified cases predating the initial identification of this form of scrapie, and epidemiological studies have indicated that it does not conform to the behaviour of an infectious disease, giving rise to the hypothesis that it represents spontaneous disease.However, atypical scrapie isolates have been shown to be infectious experimentally, through intracerebral inoculation in transgenic mice and sheep. The first successful challenge of a sheep with 'field' atypical scrapie from an homologous donor sheep was reported in 2007. RESULTS: This study demonstrates that atypical scrapie has distinct clinical, pathological and biochemical characteristics which are maintained on transmission and sub-passage, and which are distinct from other strains of transmissible spongiform encephalopathies in the same host genotype. CONCLUSIONS: Atypical scrapie is consistently transmissible within AHQ homozygous sheep, and the disease phenotype is preserved on sub-passage.
Asunto(s)
Fenotipo , Priones/genética , Scrapie/genética , Scrapie/transmisión , Animales , Genotipo , OvinosRESUMEN
BACKGROUND: As there is limited information about the clinical signs of BSE and scrapie in goats, studies were conducted to describe the clinical progression of scrapie and BSE in goats and to evaluate a short clinical protocol for its use in detecting scrapie-affected goats in two herds with previously confirmed scrapie cases. Clinical assessments were carried out in five goats intracerebrally infected with the BSE agent as well as five reported scrapie suspects and 346 goats subject to cull from the two herds, 24 of which were retained for further monitoring. The brain and selected lymphoid tissue were examined by postmortem tests for disease confirmation. RESULTS: The sensitivity and specificity of the short clinical protocol in detecting a scrapie case in the scrapie-affected herds was 3.9% and 99.6%, respectively, based on the presence of tremor, positive scratch test, extensive hair loss, ataxia and absent menace response. All BSE- and scrapie-affected goats displayed abnormalities in sensation (over-reactivity to external stimuli, startle responses, pruritus, absent menace response) and movement (ataxia, tremor, postural deficits) at an advanced clinical stage but the first detectable sign associated with scrapie or BSE could vary between animals. Signs of pruritus were not always present despite similar prion protein genotypes. Clinical signs of scrapie were also displayed by two scrapie cases that presented with detectable disease-associated prion protein only in lymphoid tissues. CONCLUSIONS: BSE and scrapie may present as pruritic and non-pruritic forms in goats. Signs assessed for the clinical diagnosis of scrapie or BSE in goats should include postural and gait abnormalities, pruritus and visual impairment. However, many scrapie cases will be missed if detection is solely based on the display of clinical signs. PrPd accumulation in the brain appeared to be related to the severity of clinical disease but not to the display of individual neurological signs.
Asunto(s)
Encefalopatía Espongiforme Bovina/patología , Enfermedades de las Cabras/patología , Scrapie/patología , Animales , Síntomas Conductuales , Encéfalo/metabolismo , Bovinos , Encefalopatía Espongiforme Bovina/genética , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Enfermedades de las Cabras/genética , Cabras , Masculino , Movimiento , Postura , Scrapie/genéticaRESUMEN
BACKGROUND: Various clinical protocols have been developed to aid in the clinical diagnosis of classical bovine spongiform encephalopathy (BSE), which is confirmed by postmortem examinations based on vacuolation and accumulation of disease-associated prion protein (PrPd) in the brain. The present study investigated the occurrence and progression of sixty selected clinical signs and behaviour combinations in 513 experimentally exposed cattle subsequently categorised postmortem as confirmed or unconfirmed BSE cases. Appropriate undosed or saline inoculated controls were examined similarly and the data analysed to explore the possible occurrence of BSE-specific clinical expression in animals unconfirmed by postmortem examinations. RESULTS: Based on the display of selected behavioural, sensory and locomotor changes, 20 (67%) orally dosed and 17 (77%) intracerebrally inoculated pathologically confirmed BSE cases and 21 (13%) orally dosed and 18 (6%) intracerebrally inoculated but unconfirmed cases were considered clinical BSE suspects. None of 103 controls showed significant signs and were all negative on diagnostic postmortem examinations. Signs indicative of BSE suspects, particularly over-reactivity and ataxia, were more frequently displayed in confirmed cases with vacuolar changes in the brain. The display of several BSE-associated signs over time, including repeated startle responses and nervousness, was significantly more frequent in confirmed BSE cases compared to controls, but these two signs were also significantly more frequent in orally dosed cattle unconfirmed by postmortem examinations. CONCLUSIONS: The findings confirm that in experimentally infected cattle clinical abnormalities indicative of BSE are accompanied by vacuolar changes and PrPd accumulation in the brainstem. The presence of more frequently expressed signs in cases with vacuolar changes is consistent with this pathology representing a more advanced stage of disease. That BSE-like signs or sign combinations occur in inoculated animals that were not confirmed as BSE cases by postmortem examinations requires further study to investigate the potential causal relationship with prion disease.
Asunto(s)
Encefalopatía Espongiforme Bovina/patología , Animales , Conducta Animal/fisiología , Bovinos , Diagnóstico , Encefalopatía Espongiforme Bovina/diagnóstico , Femenino , Masculino , Factores de TiempoRESUMEN
In 2018 prion disease was detected in camels at an abattoir in Algeria for the first time. The emergence of prion disease in this species made it prudent to assess the probability of entry of the pathogen into the United Kingdom (UK) from this region. Potentially contaminated products were identified as evidenced by other prion diseases. The aggregated probability of entry of the pathogen was estimated as very high and high for legal milk and cheese imports respectively and very high, high and high for illegal meat, milk and cheese products respectively. This aggregated probability represents a qualitative assessment of the probability of one or more entry events per year into the UK; it gives no indication of the number of entry events per year. The uncertainty associated with these estimates was high due to the unknown variation in prevalence of infection in camels and an uncertain number and type of illegal products entering the UK. Potential public health implications of this pathogen are unknown although there is currently no evidence of zoonotic transmission of prion diseases other than bovine spongiform encephalopathy to humans.
RESUMEN
After an outbreak of classical scrapie in a dairy goat herd with over 1,800 goats, all goats in the herd were culled in 2008, cleaning and disinfection of the premises was implemented, and restocking with goats took place ~4 months after depopulation. Ten years later the new herd population is over 3,000 goats. This study was carried out to determine whether the measures were effective to prevent re-occurrence of scrapie to the 1% prevalence level seen when scrapie was first detected on this farm. A total of 280 goats with a minimum age of 18 months, which were predominantly at the end of their productive life, were euthanized, and brain and retropharyngeal lymph node examined by immunohistochemistry for disease-associated prion protein. Genotyping was done in all euthanized goats and live male goats used or intended for breeding to determine prion protein gene polymorphisms associated with resistance to classical scrapie. None of the goats presented with disease-associated prion protein in the examined tissues, and 34 (12.2%) carried the K222 allele associated with resistance. This allele was also found in four breeding male goats. The study results suggested that classical scrapie was not re-introduced on this goat farm through mass restocking or inadequate cleaning and disinfection procedures. Further scrapie surveillance of goats on this farm is desirable to confirm absence of disease. Breeding with male goats carrying the K222 allele should be encouraged to increase the scrapie-resistant population.
RESUMEN
Current European surveillance regulations for scrapie, a naturally occurring transmissible spongiform encephalopathy (TSE) or prion disease in sheep and goats, require testing of fallen stock or healthy slaughter animals, and outline measures in the case of confirmation of disease. An outbreak of classical scrapie in a herd with 2500 goats led to the culling of the whole herd, providing the opportunity to examine a subset of goats, take samples, and examine them for the presence of disease-associated prion protein (PrPSc) to provide further information on scrapie test sensitivity, pathology, and association with prion protein genotype. Goats were examined clinically prior to cull, and the brains examined post mortem by Bio-Rad ELISA, a rapid screening test used for active surveillance in sheep and goats, and two confirmatory tests, Western blot and immunohistochemistry. Furthermore, up to 10 lymphoid tissues were examined by immunohistochemistry. Of 151 goats examined, three (2.0%) tested positive for scrapie by ELISA on brain, confirmed by confirmatory tests, and a further five (3.3%) were negative by ELISA but positive by at least one of the confirmatory tests. Only two of these, both positive by ELISA, displayed evident signs of scrapie. In addition, 10 (6.6%) goats, which also included two clinical suspects, were negative on brain examination but had detectable PrPSc in lymphoid tissue. PrPSc was detected most frequently in the medial retropharyngeal lymph node (LN; 94.4% of all 18 cases) and palatine tonsil (88.9%). Abnormal behavior and circling or loss of balance when blindfolded were the best clinical discriminators for scrapie status. None of the goats that carried a single allele in the prion protein gene associated with increased resistance to scrapie (Q211, K222, S146) were scrapie-positive, and the percentage of goats with these alleles was greater than expected from previous surveys. Significantly more goats that were scrapie-positive were isoleucine homozygous at codon 142 (II142). The results indicate that the sensitivity of the applied screening test is poor in goats compared to the confirmatory tests as gold standard, particularly for asymptomatic animals. Sensitivity of surveillance could be improved by testing retropharyngeal LN or palatine tonsil in addition to brain.
RESUMEN
BACKGROUND: Histopathological examinations of brains from healthy pigs have revealed localised vacuolar changes, predominantly in the rostral colliculus, that are similar to the neuropil vacuolation featured in the transmissible spongiform encephalopathies and have been described in pigs challenged parenterally with the agent causing bovine spongiform encephalopathy (BSE). Feedstuff containing BSE-contaminated meat and bone meal (MBM) may have been fed to pigs prior to the ban of mammalian MBM in feed of farmed livestock in the United Kingdom in 1996, but there is no evidence of the natural occurrence of a transmissible spongiform encephalopathy (TSE) in the domestic pig. Furthermore, experimental transmission of BSE to pigs by the oral route has been unsuccessful. A study was conducted to investigate whether the localised vacuolar changes in the porcine brain were associated with a transmissible aetiology and therefore biologically significant. Two groups of ten pigs were inoculated parenterally with vacuolated rostral colliculus from healthy pigs either born before 1996 or born after 1996. Controls included ten pigs similarly inoculated with rostral colliculus from New Zealand-derived pigs and nine pigs inoculated with a bovine BSE brain homogenate. RESULTS: None of the pigs inoculated with rostral colliculus developed a TSE-like neurological disease up to five years post inoculation when the study was terminated, and disease-associated prion protein, PrPd, was not detected in the brains of these pigs. By contrast, eight of nine BSE-inoculated pigs developed neurological signs, two of which had detectable PrPd by postmortem tests. No significant histopathological changes were detected to account for the clinical signs in the PrPd-negative, BSE-inoculated pigs. CONCLUSION: The findings in this study suggest that vacuolation in the porcine rostral colliculus is not caused by a transmissible agent and is probably a clinically insignificant change. The presence of neurological signs in pigs inoculated with BSE without detectable PrPd raises the possibility that the BSE agent may produce a prion disease in pigs that remains undetected by the current postmortem tests.
Asunto(s)
Encéfalo/patología , Encefalopatía Espongiforme Bovina/transmisión , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/transmisión , Animales , Western Blotting , Trasplante de Tejido Encefálico/veterinaria , Bovinos , Encefalopatía Espongiforme Bovina/patología , Femenino , Inmunohistoquímica , Masculino , Priones/aislamiento & purificación , Distribución Aleatoria , PorcinosRESUMEN
The transmissible spongiform encephalopathy scrapie of sheep/goats and chronic wasting disease of cervids are associated with environmental reservoirs of infectivity. Preventing environmental prions acting as a source of infectivity to healthy animals is of major concern to farms that have had outbreaks of scrapie and also to the health management of wild and farmed cervids. Here, an efficient scrapie decontamination protocol was applied to a farm with high levels of environmental contamination with the scrapie agent. Post-decontamination, no prion material was detected within samples taken from the farm buildings as determined using a sensitive in vitro replication assay (sPMCA). A bioassay consisting of 25 newborn lambs of highly susceptible prion protein genotype VRQ/VRQ introduced into this decontaminated barn was carried out in addition to sampling and analysis of dust samples that were collected during the bioassay. Twenty-four of the animals examined by immunohistochemical analysis of lymphatic tissues were scrapie-positive during the bioassay, samples of dust collected within the barn were positive by month 3. The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.
Asunto(s)
Descontaminación/normas , Granjas , Priones/aislamiento & purificación , Scrapie/transmisión , Animales , Animales Recién Nacidos , Bioensayo/veterinaria , Polvo , Monitoreo del Ambiente , Genotipo , Priones/genética , Scrapie/epidemiología , Ovinos , Reino Unido/epidemiologíaRESUMEN
BACKGROUND: The risk of scrapie infection increases with increased duration and proximity of contact between sheep at lambing. Scrapie infectivity has not been detected in milk but cellular prion protein, the precursor of disease-associated prion protein PrPd, has been found in milk from ruminants. To determine whether milk is able to transmit scrapie, 18 lambs with a prion protein genotype associated with high susceptibility to scrapie (VRQ/VRQ) were fed milk from twelve scrapie-affected ewes of the same genotype, and 15 VRQ/VRQ sheep reared on scrapie-free dams served as controls. RESULTS: Three lambs fed milk from scrapie-affected ewes were culled due to intercurrent diseases at 43, 44 and 105 days of age respectively, and PrPd was detected in the distal ileum of the first two lambs, whilst PrPd was not found in lymphoreticular tissues in the third lamb. A control lamb, housed in a separate pen and culled at 38 days of age, was also negative for PrPd in a range of tissues. Samples of recto-anal mucosa associated lymphoid tissue collected from the remaining 15 live lambs at seven months of age (between five to seven months after mixing) were positive for PrPd in the scrapie milk recipients, whereas PrPd was not detected in the remaining 14 controls at that time. A subsequent sample collected from control lambs revealed PrPd accumulation in two of five lambs eight months after mixing with scrapie milk recipients suggestive of an early stage of infection via lateral transmission. By contrast, the control sheep housed in the same building but not mixed with the scrapie milk recipients were still negative for PrPd. CONCLUSION: The presence of PrPd in distal ileum and rectal mucosa indicates transmission of scrapie from ewe to lamb via milk (or colostrum) although it is not yet clear if such cases would go on to develop clinical disease. The high level of infection in scrapie-milk recipients revealed by rectal mucosal testing at approximately seven months of age may be enhanced or supplemented by intra-recipient infection as these lambs were mixed together after feeding with milk from scrapie-affected ewes and we also observed lateral transmission from these animals to lambs weaned from scrapie-free ewes.