Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 11(12): 11645-11653, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30821955

RESUMEN

We fabricate and characterize vertical molecular junctions consisting of self-assembled monolayers of diarylethene (DAE) contacted by a multilayer graphene (MLG) electrode on the top and gold on the bottom. The DAE molecular junctions show two stable electrical states, a closed state (high conductance) or an open state (low conductance), which are created upon illumination with UV or visible light, respectively. For the Au-DAE-MLG junction structure, we observe that the current levels between the two conductance states are separated by 2 orders of magnitude. However, in a real-time measurement, we observe only unidirectional switching behavior from the open to the closed state.

2.
ACS Appl Mater Interfaces ; 9(48): 42043-42049, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29130304

RESUMEN

In this study, we fabricated and characterized vertical molecular junctions consisting of self-assembled monolayers of benzenedithiol (BDT) with a p-doped multilayer graphene electrode. The p-type doping of a graphene film was performed by treating pristine graphene (work function of ∼4.40 eV) with trifluoromethanesulfonic (TFMS) acid, producing a significantly increased work function (∼5.23 eV). The p-doped graphene-electrode molecular junctions statistically showed an order of magnitude higher current density and a lower charge injection barrier height than those of the pristine graphene-electrode molecular junctions, as a result of interface engineering. This enhancement is due to the increased work function of the TFMS-treated p-doped graphene electrode in the highest occupied molecular orbital-mediated tunneling molecular junctions. The validity of these results was proven by a theoretical analysis based on a coherent transport model that considers asymmetric couplings at the electrode-molecule interfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA