Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Opt Express ; 23(16): 20820-8, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26367935

RESUMEN

We report the effect of geometrical factors governing the polarization profiles of near-field scanning optical microscope (NSOM) probes. The most important physical parameter controlling the selective electric or magnetic field sensitivity is found to be the width of the metal rim surrounding aperture. Probes with metal rim width w < λ/2 selectively senses the optical electric field, while those with w > λ/2 selectively senses the optical magnetic field. Intensity variation of optical Hertz standing wave formed upon reflection at oblique incidence shows a phase difference of π/2 between electric and magnetic probes: an analogue of the classical Wiener's experiment. Our work paves way towards electromagnetic engineering of nanostructures.

2.
Opt Express ; 22(22): 26844-53, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25401831

RESUMEN

We propose a novel trench-assisted circular metal nano-slit (CMNS) structure implementable on a fiber platform for the generation of a low-noise cylindrical surface plasmon (CSP) hotspot. We design trench structures based on a multi-pole cancellation method in order that a converging surface plasmon signal is well separated from co-propagating non-confined diffracted light (NCDL) at the hotspot location. In fact, the secondary radiation by the quasi-pole oscillation at the edge of the trench cancels the primary NCDL, thereby enhancing the signal-to-noise ratio (SNR) of the CSP hotspot. In particular, we investigate two types of trench structures: a rectangular-trench (RT) structure and an asymmetric-parabolic-trench (APT) structure, which are considered for the sake of the simplicity of fabrication and of the maximal enhancement of the SNR, respectively. In comparison with a conventional CMNS having no trenches, we highlight that the mean SNR of the CSP hotspot is enhanced by 6.97 and 11.89 dB in case of the optimized RT and APT CMNSs, respectively. The proposed schemes are expected to be useful for increasing the SNR of plasmonic devices that are interfered by NCDL, such as various types of nano-slits for generating high-resolution plasmonic signals, for example.

3.
Opt Express ; 21(5): 5625-33, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23482134

RESUMEN

Local distribution of the optical magnetic field is a critical parameter in developing materials with artificially engineered optical properties. Optical magnetic field characterization in nano-scale remains a challenge, because of the weak matter-optical magnetic field interactions. Here, we demonstrate an experimental visualization of the optical magnetic field profiles by raster scanning circular apertures in metal film or in a conical probe. Optical magnetic fields of surface plasmon polaritons and radially polarized beam are visualized by measuring the transmission through metallic apertures, in excellent agreements with theoretical predictions. Our results show that Bethe-Bouwkamp aperture can be used in visualizing optical magnetic field profiles.

4.
Opt Express ; 19(11): 10907-12, 2011 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-21643350

RESUMEN

We use coupled mode theory (CMT) to analyze a metal-insulator-metal (MIM) plasmonic stub structure, to reveal the existence of asymmetry in its transmittance spectra. Including the effect of the near field contribution for the stub structure, the observed asymmetry is interpreted as Fano-type interference between the quasi-continuum T-junction-resonator local-modes and discrete stub eigenmodes. Based on the asymmetry factor derived from the CMT analysis, methods to control transmittance asymmetry are also demonstrated.

5.
Opt Express ; 19(13): 12342-7, 2011 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-21716471

RESUMEN

We compare single- and double-sided excitation methods of adiabatic surface plasmon polariton (SPP) wave superfocusing for scattering-type metallic near-field scanning optical microscopy (s-NSOM). Using the results of full 3D finite difference time domain analyses, the differences in field enhancement factors are explained and reveal the mode selectivity of a conical NSOM tip for adiabatic SPP superfocusing. Exploiting the mode-symmetric nature of the tip further, we also show that it is possible to selectively confine either the electric or magnetic field at the NSOM tip apex, by simply adjusting the relative phase between the SPP waves in the double-sided excitation approach.


Asunto(s)
Campos Electromagnéticos , Metales/química , Microscopía/métodos , Resonancia por Plasmón de Superficie/métodos , Análisis de Elementos Finitos , Interferometría/instrumentación , Interferometría/métodos , Microscopía/instrumentación , Nanoestructuras , Dispersión de Radiación , Resonancia por Plasmón de Superficie/instrumentación
6.
Opt Express ; 19(25): 25500-11, 2011 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-22273943

RESUMEN

Junction structures provide the foundation of digital electronics and spintronics today. An equivalent, a photonic junction to achieve systematic and drastic control of photon flow is currently missing, but is mandatory for serious all-optical signal processing. Here we propose a photonic junction built upon mode-orthogonal hetero-structures, as a fundamental structural unit for photonic integrated circuits. Controlling the optical potential of mode-orthogonal junctions, the flow of photons can be dynamically manipulated, to complete the correspondence to the electronic junction structures. Of the possible applications, we provide examples of a photonic junction diode and a multi-junction half-adder, with exceptional performance metrics. Highly directional (41dB), nearly unity throughput, ultra-low threshold-power, high quality signal regeneration at 200Gb/s, and all-optic logic operations are successfully derived with the self-induced, bi-level dynamic mode-conversion process across the junction.


Asunto(s)
Diseño Asistido por Computadora , Modelos Teóricos , Dispositivos Ópticos , Fotometría/instrumentación , Semiconductores , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Fotones , Dispersión de Radiación
7.
Nano Lett ; 10(6): 2064-8, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20469898

RESUMEN

Unusual performances of metamaterials such as negative index of refraction, memory effect, and cloaking originate from the resonance features of the metallic composite atom(1-6). Indeed, control of metamaterial properties by changing dielectric environments of thin films below the metallic resonators has been demonstrated(7-11). However, the dynamic control ranges are still limited to less than a factor of 10,(7-11) with the applicable bandwidth defined by the sharp resonance features. Here, we present ultra-broad-band metamaterial thin film with colossal dynamic control range, fulfilling present day research demands. Hybridized with thin VO(2) (vanadium dioxide) (12-18) films, nanoresonator supercell arrays designed for one decade of spectral width in terahertz frequency region show an unprecedented extinction ratio of over 10000 when the underlying thin film experiences a phase transition. Our nanoresonator approach realizes the full potential of the thin film technology for long wavelength applications.

8.
Opt Express ; 18(9): 8800-5, 2010 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-20588724

RESUMEN

We propose a rigorous design method of structured gratings for out of plane mode conversion, line focusing and manipulation of Surface Plasmon Polariton (SPP) waves. Employing a blazed grating to incorporate the directionality of SPP launch, and at the same time controlling grating depth and chirp to account for the radiation loss and diffraction angle, it was possible to achieve high efficiency and flexible SPP to freespace mode conversion. Devices with advanced functionalities, such as balanced SPP power splitter, and SPP wavelength demultiplexer are demonstrated with over 75% of power efficiencies at reasonable working distances of less than several wavelengths.

9.
Opt Express ; 18(16): 16452-9, 2010 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-20721032

RESUMEN

We report on an order of magnitude enhanced nonlinear response of vanadium dioxide thin film patterned with nanoresonators--nano slot antennas fabricated on the gold film. Transmission of terahertz radiation, little affected by an optical pumping for the case of bulk thin film, can now be completely switched-off: DeltaT/T approximately -0.9999 by the same optical pumping power. This unprecedentedly large optical pump-terahertz probe nonlinearity originates from the insulator-to-metal phase transition drastically reducing the antenna cross sections of the nanoresonators. Our scheme enables nanoscale-thin film technology to be used for all-optical switching of long wavelength light.


Asunto(s)
Nanoestructuras/química , Dispersión de Radiación , Radiación Terahertz , Compuestos de Vanadio/química , Diseño Asistido por Computadora , Diseño de Equipo , Refractometría/instrumentación
10.
Opt Express ; 17(21): 18852-7, 2009 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20372619

RESUMEN

We propose a novel metal slit array Fresnel lens for wavelength-scale optical coupling into a nanophotonic waveguide. Using the plasmonic waveguide structure in Fresnel lens form, a much wider beam acceptance angle and wavelength-scale working distance of the lens was realized compared to a conventional dielectric Fresnel lens. By applying the plasmon waveguide dispersion relation to a phased antenna array model, we also develop and analyze design rules and parameters for the suggested metal slit Fresnel lens. Numerical assessment of the suggested structure shows excellent coupling efficiency (up to 59%) of the 10 mum free-space Gaussian beam to the 0.36 mum Si waveguide within a working distance of a few mum.

11.
Phys Rev Lett ; 103(26): 263901, 2009 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20366312

RESUMEN

We propose and analyze the "complementary" structure of a metallic nanogap, namely, the metallic nanowire for magnetic field enhancement. A huge enhancement of the field up to a factor of 300 was achieved. Introducing the surface impedance concept, we also develop and numerically confirm a new analytic theory which successfully predicts the field enhancement factors for metal nanostructures. Compared to the predictions of the classical Babinet principle applied to a nanogap, an order of magnitude difference in the field enhancement factor was observed for the sub-skin-depth regime nanowire.

12.
Opt Express ; 16(18): 13752-7, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18772986

RESUMEN

A photonic analog-to-digital converter (PADC) utilizing a slow-light photonic crystal Mach-Zehnder interferometer (MZI) is proposed, to enable the optically coded output of a PADC with reduced device size and power consumption. Assuming an index modulation for the MZI on the Taylor's PADC structure, limiting factors in device size, speed, and effective number of bits are derived considering the signal transition time of the light and the slow light dispersion effects. Details of the device design and results of a time domain assessment of the device performance is described with discussions on the feasibility of sub-mm size, 20GS/s operation of the device having the ENOB (effective number of bits) > 5.


Asunto(s)
Conversión Analogo-Digital , Compresión de Datos/métodos , Óptica y Fotónica/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Telecomunicaciones/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Miniaturización , Fotones
13.
Sci Rep ; 7: 42447, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186157

RESUMEN

A meta-atom platform providing decoupled tuning for the constitutive wave parameters remains as a challenging problem, since the proposition of Pendry. Here we propose an electromagnetic meta-atom design of internal anisotropy (εr ≠ εθ), as a pathway for decoupling of the effective- permittivity εeff and permeability µeff. Deriving effective parameters for anisotropic meta-atom from the first principles, and then subsequent inverse-solving the obtained decoupled solution for a target set of εeff and µeff, we also achieve an analytic, top-down determination for the internal structure of a meta-atom. To realize the anisotropy from isotropic materials, a particle of spatial permittivity modulation in r or θ direction is proposed. As an application example, a matched zero index dielectric meta-atom is demonstrated, to enable the super-funneling of a 50λ-wide flux through a sub-λ slit; unharnessing the flux collection limit dictated by the λ-zone.

14.
ACS Appl Mater Interfaces ; 9(22): 19092-19101, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28452459

RESUMEN

It is well-known that gold nanoparticle (AuNP) clusters generate strong surface-enhanced Raman scattering (SERS). In order to produce spatially uniform Raman-enhancing substrates at a large scale, we synthesized vertically perforated three-dimensional (3D) AuNP stacks. The 3D stacks were fabricated by first hydrothermally synthesizing ZnO nanowires perpendicular to silicon wafers followed by repetitively performing liquid-phase deposition of AuNPs on the tops and side surfaces of the nanowires. During the deposition process, the nanowires were shown to gradually dissolve away, leaving hollow vestiges or perforations surrounded by stacks of AuNPs. Simulation studies and experimental measurements reveal these nanoscale perforations serve as light paths that allow the excitation light to excite deeper regions of the 3D stacks for stronger overall Raman emission. Combined with properly sized nanoparticles, this feature maximizes and saturates the Raman enhancement at 1-pM sensitivity across the entire wafer-scale substrate, and the saturation improves the wafer-scale uniformity by a factor of 6 when compared to nanoparticle layers deposited directly on a silicon wafer substrate. Using the 3D-stacked substrates, quantitative sensing of adenine molecules yielded concentrations measurements within 10% of the known value. Understanding the enhancing mechanisms and engineering the 3D stacks have opened a new method of harnessing the intense SERS observed in nanoparticle clusters and realize practical SERS substrates with significantly improved uniformity suitable for quantitative chemical sensing.

15.
Nat Commun ; 7: 13012, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27687689

RESUMEN

The common behaviour of a wave is determined by wave parameters of its medium, which are generally associated with the characteristic oscillations of its corresponding elementary particles. In the context of metamaterials, the decoupled excitation of these fundamental oscillations would provide an ideal platform for top-down and reconfigurable access to the entire constitutive parameter space; however, this has remained as a conceivable problem that must be accomplished, after being pointed out by Pendry. Here by focusing on acoustic metamaterials, we achieve the decoupling of density ρ, modulus B-1 and bianisotropy ξ, by separating the paths of particle momentum to conform to the characteristic oscillations of each macroscopic wave parameter. Independent access to all octants of wave parameter space (ρ, B-1, ξ)=(+/-,+/-,+/-) is thus realized using a single platform that we call an omni meta-atom; as a building block that achieves top-down access to the target properties of metamaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA