Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 178(5): 1057-1071.e11, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442400

RESUMEN

The Zika epidemic in the Americas has challenged surveillance and control. As the epidemic appears to be waning, it is unclear whether transmission is still ongoing, which is exacerbated by discrepancies in reporting. To uncover locations with lingering outbreaks, we investigated travel-associated Zika cases to identify transmission not captured by reporting. We uncovered an unreported outbreak in Cuba during 2017, a year after peak transmission in neighboring islands. By sequencing Zika virus, we show that the establishment of the virus was delayed by a year and that the ensuing outbreak was sparked by long-lived lineages of Zika virus from other Caribbean islands. Our data suggest that, although mosquito control in Cuba may initially have been effective at mitigating Zika virus transmission, such measures need to be maintained to be effective. Our study highlights how Zika virus may still be "silently" spreading and provides a framework for understanding outbreak dynamics. VIDEO ABSTRACT.


Asunto(s)
Epidemias , Genómica/métodos , Infección por el Virus Zika/epidemiología , Aedes/virología , Animales , Cuba/epidemiología , Humanos , Incidencia , Control de Mosquitos , Filogenia , ARN Viral/química , ARN Viral/metabolismo , Análisis de Secuencia de ARN , Viaje , Indias Occidentales/epidemiología , Virus Zika/clasificación , Virus Zika/genética , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
2.
BMC Genomics ; 25(1): 433, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693476

RESUMEN

BACKGROUND: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.


Asunto(s)
Virus del Dengue , Genoma Viral , Serogrupo , Secuenciación Completa del Genoma , Virus del Dengue/genética , Virus del Dengue/aislamiento & purificación , Virus del Dengue/clasificación , Secuenciación Completa del Genoma/métodos , Humanos , Genotipo , Dengue/virología , Dengue/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Viral/genética
3.
Emerg Infect Dis ; 30(2): 376-379, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232709

RESUMEN

During May 2022-April 2023, dengue virus serotype 3 was identified among 601 travel-associated and 61 locally acquired dengue cases in Florida, USA. All 203 sequenced genomes belonged to the same genotype III lineage and revealed potential transmission chains in which most locally acquired cases occurred shortly after introduction, with little sustained transmission.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Virus del Dengue/genética , Dengue/epidemiología , Florida/epidemiología , Viaje , Secuencia de Bases , Genotipo , Serogrupo , Filogenia
4.
Emerg Infect Dis ; 29(8): 1643-1647, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385262

RESUMEN

We report a dengue outbreak in Key Largo, Florida, USA, from February through August 2020, during the COVID-19 pandemic. Successful community engagement resulted in 61% of case-patients self-reporting. We also describe COVID-19 pandemic effects on the dengue outbreak investigation and the need to increase clinician awareness of dengue testing recommendations.


Asunto(s)
COVID-19 , Dengue , Humanos , COVID-19/epidemiología , Dengue/epidemiología , Florida/epidemiología , Pandemias , Brotes de Enfermedades
6.
Nature ; 546(7658): 401-405, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28538723

RESUMEN

Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions.


Asunto(s)
Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/virología , Virus Zika/genética , Aedes/virología , Animales , Región del Caribe/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Femenino , Florida/epidemiología , Genoma Viral/genética , Humanos , Incidencia , Epidemiología Molecular , Mosquitos Vectores/virología , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/transmisión
7.
Nature ; 546(7658): 411-415, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28538734

RESUMEN

Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.


Asunto(s)
Filogenia , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Virus Zika/genética , Virus Zika/aislamiento & purificación , Animales , Brasil/epidemiología , Colombia/epidemiología , Culicidae/virología , Brotes de Enfermedades/estadística & datos numéricos , Genoma Viral/genética , Mapeo Geográfico , Honduras/epidemiología , Humanos , Metagenoma/genética , Epidemiología Molecular , Mosquitos Vectores/virología , Mutación , Vigilancia en Salud Pública , Puerto Rico/epidemiología , Estados Unidos/epidemiología , Virus Zika/clasificación , Virus Zika/patogenicidad , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/epidemiología
9.
medRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873191

RESUMEN

Background: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. Results: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 101-102 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. Conclusions: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA