Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cochrane Database Syst Rev ; 7: CD013451, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979716

RESUMEN

BACKGROUND: Bisphosphonates and receptor activator of nuclear factor-kappa B ligand (RANKL)-inhibitors are amongst the bone-modifying agents used as supportive treatment in women with breast cancer who do not have bone metastases. These agents aim to reduce bone loss and the risk of fractures. Bisphosphonates have demonstrated survival benefits, particularly in postmenopausal women. OBJECTIVES: To assess and compare the effects of different bone-modifying agents as supportive treatment to reduce bone mineral density loss and osteoporotic fractures in women with breast cancer without bone metastases and generate a ranking of treatment options using network meta-analyses (NMAs). SEARCH METHODS: We identified studies by electronically searching CENTRAL, MEDLINE and Embase until January 2023. We searched various trial registries and screened abstracts of conference proceedings and reference lists of identified trials. SELECTION CRITERIA: We included randomised controlled trials comparing different bisphosphonates and RANKL-inihibitors with each other or against no further treatment or placebo for women with breast cancer without bone metastases. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed the risk of bias of included studies and certainty of evidence using GRADE. Outcomes were bone mineral density, quality of life, overall fractures, overall survival and adverse events. We conducted NMAs and generated treatment rankings. MAIN RESULTS: Forty-seven trials (35,163 participants) fulfilled our inclusion criteria; 34 trials (33,793 participants) could be considered in the NMA (8 different treatment options). Bone mineral density We estimated that the bone mineral density of participants with no treatment/placebo measured as total T-score was -1.34. Evidence from the NMA (9 trials; 1166 participants) suggests that treatment with ibandronate (T-score -0.77; MD 0.57, 95% CI -0.05 to 1.19) may slightly increase bone mineral density (low certainty) and treatment with zoledronic acid (T-score -0.45; MD 0.89, 95% CI 0.62 to 1.16) probably slightly increases bone mineral density compared to no treatment/placebo (moderate certainty). Risedronate (T-score -1.08; MD 0.26, 95% CI -0.32 to 0.84) may result in little to no difference compared to no treatment/placebo (low certainty). We are uncertain whether alendronate (T-score 2.36; MD 3.70, 95% CI -2.01 to 9.41) increases bone mineral density compared to no treatment/placebo (very low certainty). Quality of life No quantitative analyses could be performed for quality of life, as only three studies reported this outcome. All three studies showed only minimal differences between the respective interventions examined. Overall fracture rate We estimated that 70 of 1000 participants with no treatment/placebo had fractures. Evidence from the NMA (16 trials; 19,492 participants) indicates that treatment with clodronate or ibandronate (42 of 1000; RR 0.60, 95% CI 0.39 to 0.92; 40 of 1000; RR 0.57, 95% CI 0.38 to 0.86, respectively) decreases the number of fractures compared to no treatment/placebo (high certainty). Denosumab or zoledronic acid (51 of 1000; RR 0.73, 95% CI 0.52 to 1.01; 55 of 1000; RR 0.79, 95% CI 0.56 to 1.11, respectively) probably slightly decreases the number of fractures; and risedronate (39 of 1000; RR 0.56, 95% CI 0.15 to 2.16) probably decreases the number of fractures compared to no treatment/placebo (moderate certainty). Pamidronate (106 of 1000; RR 1.52, 95% CI 0.75 to 3.06) probably increases the number of fractures compared to no treatment/placebo (moderate certainty). Overall survival We estimated that 920 of 1000 participants with no treatment/placebo survived overall. Evidence from the NMA (17 trials; 30,991 participants) suggests that clodronate (924 of 1000; HR 0.95, 95% CI 0.77 to 1.17), denosumab (927 of 1000; HR 0.91, 95% CI 0.69 to 1.21), ibandronate (915 of 1000; HR 1.06, 95% CI 0.83 to 1.34) and zoledronic acid (925 of 1000; HR 0.93, 95% CI 0.76 to 1.14) may result in little to no difference regarding overall survival compared to no treatment/placebo (low certainty). Additionally, we are uncertain whether pamidronate (905 of 1000; HR 1.20, 95% CI 0.81 to 1.78) decreases overall survival compared to no treatment/placebo (very low certainty). Osteonecrosis of the jaw We estimated that 1 of 1000 participants with no treatment/placebo developed osteonecrosis of the jaw. Evidence from the NMA (12 trials; 23,527 participants) suggests that denosumab (25 of 1000; RR 24.70, 95% CI 9.56 to 63.83), ibandronate (6 of 1000; RR 5.77, 95% CI 2.04 to 16.35) and zoledronic acid (9 of 1000; RR 9.41, 95% CI 3.54 to 24.99) probably increases the occurrence of osteonecrosis of the jaw compared to no treatment/placebo (moderate certainty). Additionally, clodronate (3 of 1000; RR 2.65, 95% CI 0.83 to 8.50) may increase the occurrence of osteonecrosis of the jaw compared to no treatment/placebo (low certainty). Renal impairment We estimated that 14 of 1000 participants with no treatment/placebo developed renal impairment. Evidence from the NMA (12 trials; 22,469 participants) suggests that ibandronate (28 of 1000; RR 1.98, 95% CI 1.01 to 3.88) probably increases the occurrence of renal impairment compared to no treatment/placebo (moderate certainty). Zoledronic acid (21 of 1000; RR 1.49, 95% CI 0.87 to 2.58) probably increases the occurrence of renal impairment while clodronate (12 of 1000; RR 0.88, 95% CI 0.55 to 1.39) and denosumab (11 of 1000; RR 0.80, 95% CI 0.54 to 1.19) probably results in little to no difference regarding the occurrence of renal impairment compared to no treatment/placebo (moderate certainty). AUTHORS' CONCLUSIONS: When considering bone-modifying agents for managing bone loss in women with early or locally advanced breast cancer, one has to balance between efficacy and safety. Our findings suggest that bisphosphonates (excluding alendronate and pamidronate) or denosumab compared to no treatment or placebo likely results in increased bone mineral density and reduced fracture rates. Our survival analysis that included pre and postmenopausal women showed little to no difference regarding overall survival. These treatments may lead to more adverse events. Therefore, forming an overall judgement of the best ranked bone-modifying agent is challenging. More head-to-head comparisons, especially comparing denosumab with any bisphosphonate, are needed to address gaps and validate the findings of this review.


Asunto(s)
Conservadores de la Densidad Ósea , Densidad Ósea , Neoplasias de la Mama , Difosfonatos , Metaanálisis en Red , Ligando RANK , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Conservadores de la Densidad Ósea/uso terapéutico , Difosfonatos/uso terapéutico , Densidad Ósea/efectos de los fármacos , Ligando RANK/antagonistas & inhibidores , Ligando RANK/uso terapéutico , Ácido Zoledrónico/uso terapéutico , Calidad de Vida , Osteoporosis/tratamiento farmacológico , Denosumab/uso terapéutico , Fracturas Osteoporóticas/prevención & control , Ácido Risedrónico/uso terapéutico , Ácido Ibandrónico/uso terapéutico , Ácido Clodrónico/uso terapéutico , Pamidronato/uso terapéutico
2.
Cochrane Database Syst Rev ; 8: CD014963, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34396514

RESUMEN

BACKGROUND: Systemic corticosteroids are used to treat people with COVID-19 because they counter hyper-inflammation. Existing evidence syntheses suggest a slight benefit on mortality. So far, systemic corticosteroids are one of the few treatment options for COVID-19. Nonetheless, size of effect, certainty of the evidence, optimal therapy regimen, and selection of patients who are likely to benefit most are factors that remain to be evaluated. OBJECTIVES: To assess whether systemic corticosteroids are effective and safe in the treatment of people with COVID-19, and to keep up to date with the evolving evidence base using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (which includes PubMed, Embase, CENTRAL, ClinicalTrials.gov, WHO ICTRP, and medRxiv), Web of Science (Science Citation Index, Emerging Citation Index), and the WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies to 16 April 2021. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that evaluated systemic corticosteroids for people with COVID-19, irrespective of disease severity, participant age, gender or ethnicity.  We included any type or dose of systemic corticosteroids. We included the following comparisons: systemic corticosteroids plus standard care versus standard care (plus/minus placebo), dose comparisons, timing comparisons (early versus late), different types of corticosteroids and systemic corticosteroids versus other active substances.  We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome or Middle East respiratory syndrome), corticosteroids in combination with other active substances versus standard care, topical or inhaled corticosteroids, and corticosteroids for long-COVID treatment. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess the risk of bias in included studies, we used the Cochrane 'Risk of bias' 2 tool for RCTs. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality, ventilator-free days, new need for invasive mechanical ventilation, quality of life, serious adverse events, adverse events, and hospital-acquired infections. MAIN RESULTS: We included 11 RCTs in 8075 participants, of whom 7041 (87%) originated from high-income countries. A total of 3072 participants were randomised to corticosteroid arms and the majority received dexamethasone (n = 2322). We also identified 42 ongoing studies and 16 studies reported as being completed or terminated in a study registry, but without results yet.  Hospitalised individuals with a confirmed or suspected diagnosis of symptomatic COVID-19 Systemic corticosteroids plus standard care versus standard care plus/minus placebo  We included 10 RCTs (7989 participants), one of which did not report any of our pre-specified outcomes and thus our analysis included outcome data from nine studies.  All-cause mortality (at longest follow-up available): systemic corticosteroids plus standard care probably reduce all-cause mortality slightly in people with COVID-19 compared to standard care alone (median 28 days: risk difference of 30 in 1000 participants fewer than the control group rate of 275 in 1000 participants; risk ratio (RR) 0.89, 95% confidence interval (CI) 0.80 to 1.00; 9 RCTs, 7930 participants; moderate-certainty evidence).  Ventilator-free days: corticosteroids may increase ventilator-free days (MD 2.6 days more than control group rate of 4 days, 95% CI 0.67 to 4.53; 1 RCT, 299 participants; low-certainty evidence). Ventilator-free days have inherent limitations as a composite endpoint and should be interpreted with caution.  New need for invasive ventilation: the evidence is of very low certainty. Because of high risk of bias arising from deaths that occurred before ventilation we are uncertain about the size and direction of the effects. Consequently, we did not perform analysis beyond the presentation of descriptive statistics.  Quality of life/neurological outcome: no data were available. Serious adverse events: we included data on two RCTs (678 participants) that evaluated systemic corticosteroids compared to standard care (plus/minus placebo); for adverse events and hospital-acquired infections, we included data on five RCTs (660 participants). Because of high risk of bias, heterogeneous definitions, and underreporting we are uncertain about the size and direction of the effects. Consequently, we did not perform analysis beyond the presentation of descriptive statistics (very low-certainty evidence).    Different types, dosages or timing of systemic corticosteroids  We identified one study that compared methylprednisolone with dexamethasone. The evidence for mortality and new need for invasive mechanical ventilation is very low certainty due to the small number of participants (n = 86). No data were available for the other outcomes. We did not identify comparisons of different dosages or timing. Outpatients with asymptomatic or mild disease Currently, there are no studies published in populations with asymptomatic infection or mild disease. AUTHORS' CONCLUSIONS: Moderate-certainty evidence shows that systemic corticosteroids probably slightly reduce all-cause mortality in people hospitalised because of symptomatic COVID-19. Low-certainty evidence suggests that there may also be a reduction in ventilator-free days. Since we are unable to  adjust for the impact of early death on subsequent endpoints, the findings for ventilation outcomes and harms have limited applicability to inform treatment decisions. Currently, there is no evidence for asymptomatic or mild disease (non-hospitalised participants).  There is an urgent need for good-quality evidence for specific subgroups of disease severity, for which we propose level of respiratory support at randomisation. This applies to the comparison or subgroups of different types and doses of corticosteroids, too. Outcomes apart from mortality should be measured and analysed appropriately taking into account confounding through death if applicable.  We identified 42 ongoing and 16 completed but not published RCTs in trials registries suggesting possible changes of effect estimates and certainty of the evidence in the future. Most ongoing studies target people who need respiratory support at baseline. With the living approach of this review, we will continue to update our search and include eligible trials and published data.


Asunto(s)
Corticoesteroides/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/diagnóstico , Humanos , Inmunización Pasiva , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial , SARS-CoV-2
3.
Burns ; 50(6): 1562-1577, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38570249

RESUMEN

The cellular mechanisms of burn conversion of heat damaged tissue are center of many studies. Even if the molecular mechanisms of heat-induced cell death are controversially discussed in the current literature, it is widely accepted that caspase-mediated apoptosis plays a central role. In the current study we wanted to develop further information on the nature of the mechanism of heat-induced cell death of fibroblasts in vitro. We found that heating of human fibroblast cultures (a 10 s rise from 37 °C to 67 °C followed by a 13 s cool down to 37 °C) resulted in the death of about 50% of the cells. However, the increase in cell death started with a delay, about one hour after exposure to heat, and reached the maximum after about five hours. The lack of clear evidence for an active involvement of effector caspase in the observed cell death mechanism and the lack of observation of the occurrence of hypodiploid nuclei contradict heat-induced cell death by caspase-mediated apoptosis. Moreover, a dominant heat-induced increase in PARP1 protein expression, which correlated with a time-delayed ATP synthesis inhibition, appearance of double-strand breaks and secondary necrosis, indicate a different type of cell death than apoptosis. Indeed, increased translocation of Apoptosis Inducing Factor (AIF) and Macrophage Migration Inhibitory Factor (MIF) into cell nuclei, which correlates with the mentioned enhanced PARP1 protein expression, indicate PARP1-induced, AIF-mediated and MIF-activated cell death. With regard to the molecular actors involved, the cellular processes and temporal sequences, the mode of cell death observed in our model is very similar to the cell death mechanism via Parthanatos described in the literature.


Asunto(s)
Apoptosis , Quemaduras , Fibroblastos , Calor , Poli(ADP-Ribosa) Polimerasa-1 , Humanos , Fibroblastos/patología , Fibroblastos/metabolismo , Quemaduras/patología , Calor/efectos adversos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Parthanatos , Necrosis , Células Cultivadas , Muerte Celular , Piel/patología , Piel/citología , Piel/lesiones , Poli(ADP-Ribosa) Polimerasas/metabolismo , Factor Inductor de la Apoptosis/metabolismo , Caspasas/metabolismo , Roturas del ADN de Doble Cadena , Adenosina Trifosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA