RESUMEN
BACKGROUND: Accurate registration between microscopy and MRI data is necessary for validating imaging biomarkers against neuropathology, and to disentangle complex signal dependencies in microstructural MRI. Existing registration methods often rely on serial histological sampling or significant manual input, providing limited scope to work with a large number of stand-alone histology sections. Here we present a customisable pipeline to assist the registration of stand-alone histology sections to whole-brain MRI data. METHODS: Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 stages, with the help of two photographic intermediaries: a block face image (to undistort histology sections) and coronal brain slab photographs (to insert them into MRI space). Each registration stage is implemented as a configurable stand-alone Python script using our novel platform, Tensor Image Registration Library (TIRL), which provides flexibility for wider adaptation. We report our experience of registering 87 PLP-stained histology sections from 14 subjects and perform various experiments to assess the accuracy and robustness of each stage of the pipeline. RESULTS: All 87 histology sections were successfully registered to MRI. Histology-to-block registration (Stage 1) achieved 0.2-0.4 mm accuracy, better than commonly used existing methods. Block-to-slice matching (Stage 2) showed great robustness in automatically identifying and inserting small tissue blocks into whole brain slices with 0.2 mm accuracy. Simulations demonstrated sub-voxel level accuracy (0.13 mm) of the slice-to-volume registration (Stage 3) algorithm, which was observed in over 200 actual brain slice registrations, compensating 3D slice deformations up to 6.5 mm. Stage 4 combined the previous stages and generated refined pixelwise aligned multi-modal histology-MRI stacks. CONCLUSIONS: Our open-source pipeline provides robust automation tools for registering stand-alone histology sections to MRI data with sub-voxel level precision, and the underlying framework makes it readily adaptable to a diverse range of microscopy-MRI studies.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neuroimagen , Técnicas Histológicas/métodos , Autopsia , Imagenología Tridimensional/métodosRESUMEN
The acquisition of MRI and histology in the same post-mortem tissue sample enables direct correlation between MRI and histologically-derived parameters. However, there still lacks a standardised automated pipeline to process histology data, with most studies relying on manual intervention. Here, we introduce an automated pipeline to extract a quantitative histological measure for staining density (stain area fraction, SAF) from multiple immunohistochemical (IHC) stains. The pipeline is designed to directly address key IHC artefacts related to tissue staining and slide digitisation. Here, the pipeline was applied to post-mortem human brain data from multiple subjects, relating MRI parameters (FA, MD, RD, AD, R2*, R1) to IHC slides stained for myelin, neurofilaments, microglia and activated microglia. Utilising high-quality MRI-histology co-registrations, we then performed whole-slide voxelwise comparisons (simple correlations, partial correlations and multiple regression analyses) between multimodal MRI- and IHC-derived parameters. The pipeline was found to be reproducible, robust to artefacts and generalisable across multiple IHC stains. Our partial correlation results suggest that some simple MRI-SAF correlations should be interpreted with caution, due to the co-localisation of other tissue features (e.g., myelin and neurofilaments). Further, we find activated microglia-a generic biomarker of inflammation-to consistently be the strongest predictor of high DTI FA and low RD, which may suggest sensitivity of diffusion MRI to aspects of neuroinflammation related to microglial activation, even after accounting for other microstructural changes (demyelination, axonal loss and general microglia infiltration). Together, these results show the utility of this approach in carefully curating IHC data and performing multimodal analyses to better understand microstructural relationships with MRI.