Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 139(2): 393-404, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19837038

RESUMEN

Wnts play pivotal roles during development and in the mature nervous system. However, the mechanism by which Wnts traffic between cells has remained elusive. Here we demonstrate a mechanism of Wnt transmission through release of exosome-like vesicles containing the Wnt-binding protein Evenness Interrupted/Wntless/Sprinter (Evi/Wls/Srt). We show that at the Drosophila larval neuromuscular junction (NMJ), presynaptic vesicular release of Evi is required for the secretion of the Wnt, Wingless (Wg). We also show that Evi acts cell-autonomously in the postsynaptic Wnt-receiving cell to target dGRIP, a Wg-receptor-interacting protein, to postsynaptic sites. Upon Evi loss of function, dGRIP is not properly targeted to synaptic sites, interfering with postsynaptic Wnt signal transduction. These findings uncover a previously unknown cellular mechanism by which a secreted Wnt is transported across synapses by Evi-containing vesicles and reveal trafficking functions of Evi in both the Wnt-producing and the Wnt-receiving cells. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transducción de Señal , Vesículas Sinápticas/metabolismo , Proteína Wnt1/metabolismo , Animales , Proteínas Portadoras/metabolismo , Receptores Frizzled/metabolismo , Proteínas de la Membrana , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular , Transporte de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Sinapsis
2.
Nat Rev Neurosci ; 10(9): 627-34, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19693027

RESUMEN

Although WNTs have been long thought of as regulators of cell fate, recent studies highlight their involvement in crucial aspects of synaptic development in the nervous system. Particularly compelling are recent studies of the neuromuscular junction in nematodes, insects, fish and mammals. These studies place WNTs as major determinants of synapse differentiation and neurotransmitter receptor clustering.


Asunto(s)
Unión Neuromuscular/fisiología , Sinapsis/fisiología , Proteínas Wnt/fisiología , Animales , Humanos , Unión Neuromuscular/química , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Sinapsis/química , Transmisión Sináptica/fisiología , Proteínas Wnt/química
3.
J Biol Chem ; 287(20): 16820-34, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22437826

RESUMEN

Wnt signaling plays critical roles during synaptic development and plasticity. However, the mechanisms by which Wnts are released and travel to target cells are unresolved. During synaptic development, the secretion of Drosophila Wnt1, Wingless, requires the function of Evenness Interrupted (Evi)/Wls, a Wingless-binding protein that is secreted along with Wingless at the neuromuscular junction. Given that Evi is a transmembrane protein, these studies suggested the presence of a novel vesicular mechanism of trans-synaptic communication, potentially in the form of exosomes. To establish the mechanisms for the release of Evi vesicles, we used a dsRNA assay in cultured cells to screen for genes that when down-regulated prevent the release of Evi vesicles. We identified two proteins, Rab11 and Syntaxin 1A (Syx1A), that were required for Evi vesicle release. To determine whether the same mechanisms were used in vivo at the neuromuscular junction, we altered the activity of Rab11 and Syx1A in motoneurons and determined the impact on Evi release. We found that Syx1A, Rab11, and its effector Myosin5 were required for proper Evi vesicle release. Furthermore, ultrastructural analysis of synaptic boutons demonstrated the presence of multivesicular bodies, organelles involved in the production and release of exosomes, and these multivesicular bodies contained Evi. We also used mass spectrometry, electron microscopy, and biochemical techniques to characterize the exosome fraction from cultured cells. Our studies revealed that secreted Evi vesicles show remarkable conservation with exosomes in other systems. In summary, our observations unravel some of the in vivo mechanisms required for Evi vesicle release.


Asunto(s)
Proteínas de Drosophila/metabolismo , Exosomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Unión Neuromuscular/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Transporte Biológico/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Exosomas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Unión Neuromuscular/genética , Vesículas Sinápticas/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
4.
Neuron ; 77(6): 1039-46, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23522040

RESUMEN

Retrograde signals from postsynaptic targets are critical during development and plasticity of synaptic connections. These signals serve to adjust the activity of presynaptic cells according to postsynaptic cell outputs and to maintain synaptic function within a dynamic range. Despite their importance, the mechanisms that trigger the release of retrograde signals and the role of presynaptic cells in this signaling event are unknown. Here we show that a retrograde signal mediated by Synaptotagmin 4 (Syt4) is transmitted to the postsynaptic cell through anterograde delivery of Syt4 via exosomes. Thus, by transferring an essential component of retrograde signaling through exosomes, presynaptic cells enable retrograde signaling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Exosomas/metabolismo , Terminales Presinápticos/metabolismo , Transducción de Señal/fisiología , Potenciales Sinápticos/fisiología , Sinaptotagminas/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila , Exosomas/química , Unión Neuromuscular/química , Unión Neuromuscular/metabolismo , Terminales Presinápticos/química , Sinapsis/química , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA