Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Blood ; 139(14): 2186-2197, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-34086889

RESUMEN

GPR34 translocation and mutation are specifically associated with salivary gland MALT lymphoma (SG-MALT-lymphoma). The majority of GPR34 mutations are clustered in its C-terminus, resulting in truncated proteins lacking the phosphorylation motif important for receptor desensitization. It is unclear why GPR34 genetic changes associate with SG-MALT-lymphoma and how these mutations contribute to the development of lymphoma. We generated isogenic Flp-InTRex293 cell lines that stably expressed a single copy of GPR34 or its various mutants and performed a range of in vitro assays. We found that the GPR34 Q340X truncation, but not the R84H and D151A mutants, conferred a significantly increased resistance to apoptosis and greater transforming potential than the GPR34 wild type. The GPR34 truncation mutant had a significantly delayed internalization compared with the wild type after ligand (lysophosphatidylserine) stimulation. Among the 9 signaling pathways examined, the GPR34 Q340X truncation, and to a lesser extent the D151A mutant, significantly activated CRE, NF-κB, and AP1 reporter activities, particularly in the presence of ligand stimulation. We further described the enhanced activities of phospholipase-A1/2 in the culture supernatant of Flp-InTRex293 cells that expressed the GPR34 Q340X mutant, as well as their potential to catalyze the synthesis of lysophosphatidylserine from phosphatidylserine. Importantly, phospholipase-A1 was abundantly expressed in the duct epithelium of salivary glands and those involved in lymphoepithelial lesions (LELs). Our findings advocate a model of paracrine stimulation of malignant B cells via GPR34, in which phospholipase A is released by LELs and hydrolyzes the phosphatidylserine exposed on apoptotic cells, generating lysophosphatidylserine, the ligand for GPR34. Thus, GPR34 activation potentially bridges LELs to genesis of SG-MALT-lymphoma.


Asunto(s)
Linfoma de Células B de la Zona Marginal , Receptores Lisofosfolípidos , Humanos , Ligandos , Linfoma de Células B de la Zona Marginal/patología , Fosfatidilserinas , Fosfolipasas , Receptores Lisofosfolípidos/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/patología
2.
Haematologica ; 107(6): 1384-1396, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35142152

RESUMEN

The genesis of extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) is driven by oncogenic co-operation among immunological stimulations and acquired genetic changes. We previously identified recurrent CCR6 mutations in MALT lymphoma, with majority predicted to result in truncated proteins lacking the phosphorylation motif important for receptor desensitization. Functional consequences of these mutational changes, the molecular mechanisms of CCR6 activation and how this receptor signaling contributes to MALT lymphoma development remain to be investigated. In the present study, we demonstrated that these mutations impaired CCR6 receptor internalization and were activating changes, being more potent in apoptosis resistance, malignant transformation, migration and intracellular signaling, particularly in the presence of the ligands CCL20, HBD2 (human b defensin 2) and HD5 (human a defensin 5). CCR6 was highly expressed in malignant B cells irrespective of the lymphoma sites. HBD2 and CCL20 were constitutively expressed by the duct epithelial cells of salivary glands, and also those involved in lymphoepithelial lesions (LEL) in salivary gland MALT lymphoma. While in the gastric setting, HBD2, and HD5, to a less extent CCL20, were highly expressed in epithelial cells of pyloric and intestinal metaplasia respectively including those involved in LEL, which are adaptive responses to chronic Helicobacter pylori infection. These findings suggest that CCR6 signaling is most likely active in MALT lymphoma, independent of its mutation status. The observations explain why the emergence of malignant B cells and their clonal expansion in MALT lymphoma are typically around LEL, linking the innate immune responses to lymphoma genesis.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Linfoma de Células B de la Zona Marginal , Defensinas , Helicobacter pylori/metabolismo , Humanos , Inmunidad Innata , Linfoma de Células B de la Zona Marginal/genética , Receptores CCR6/genética
3.
J Proteome Res ; 18(6): 2525-2534, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31083952

RESUMEN

An important area of modern biology consists of understanding the relationship between genotype and phenotype. However, to understand this relationship it is essential to investigate one of the principal links between them: the proteome. With the development of recent mass-spectrometry approaches, it is now possible to quantify entire proteomes and thus relate them to different phenotypes. Here, we present a comparison of the proteome of two extreme developmental states in the well-established model organism Drosophila melanogaster: adult and embryo. Protein modules such as ribosome, proteasome, tricarboxylic acid cycle, glycolysis, or oxidative phosphorylation were found differentially expressed between the two developmental stages. Analysis of post-translation modifications of the proteins identified in this study indicates that they generally follow the same trend as their corresponding protein. Comparison between changes in the proteome and the transcriptome highlighted patterns of post-transcriptional regulation for the subunits of protein complexes such as the ribosome and the proteasome, whereas protein from modules such as TCA cycle, glycolysis, and oxidative phosphorylation seem to be coregulated at the transcriptional level. Finally, the impact of the endosymbiont Wolbachia pipientis on the proteome of both developmental states was also investigated.


Asunto(s)
Drosophila melanogaster/genética , Biosíntesis de Proteínas/genética , Proteoma/genética , Transcriptoma/genética , Animales , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/microbiología , Regulación del Desarrollo de la Expresión Génica/genética , Proteolisis , Proteoma/metabolismo , Proteómica/métodos , Wolbachia/patogenicidad
4.
Proteomics ; 17(21)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28922568

RESUMEN

Quantitative proteomics methods have emerged as powerful tools for measuring protein expression changes at the proteome level. Using MS-based approaches, it is now possible to routinely quantify thousands of proteins. However, prefractionation of the samples at the protein or peptide level is usually necessary to go deep into the proteome, increasing both MS analysis time and technical variability. Recently, a new MS acquisition method named SWATH is introduced with the potential to provide good coverage of the proteome as well as a good measurement precision without prior sample fractionation. In contrast to shotgun-based MS however, a library containing experimental acquired spectra is necessary for the bioinformatics analysis of SWATH data. In this study, spectral libraries for two widely used models are built to study crop ripening or animal embryogenesis, Solanum lycopersicum (tomato) and Drosophila melanogaster, respectively. The spectral libraries comprise fragments for 5197 and 6040 proteins for S. lycopersicum and D. melanogaster, respectively, and allow reproducible quantification for thousands of peptides per MS analysis. The spectral libraries and all MS data are available in the MassIVE repository with the dataset identifiers MSV000081074 and MSV000081075 and the PRIDE repository with the dataset identifiers PXD006493 and PXD006495.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Solanum lycopersicum/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Drosophila melanogaster/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Biblioteca de Péptidos , Estándares de Referencia
5.
Proteomics ; 16(15-16): 2068-80, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27029218

RESUMEN

During embryogenesis, organisms undergo considerable cellular remodelling requiring the combined action of thousands of proteins. In case of the well-studied model Drosophila melanogaster, transcriptomic studies, most notably from the modENCODE project, have described in detail changes in gene expression at the mRNA level across development. Although such data are clearly very useful to understand how the genome is regulated during embryogenesis, it is important to understand how changes in gene expression are reflected at the level of the proteome. In this study, we describe a combination of two quantitative label-free approaches, SWATH and data-dependent acquisition, to monitor changes in protein expression across a timecourse of D. melanogaster embryonic development. We demonstrate that both approaches provide robust and reproducible methods for the analysis of proteome changes. In a preliminary analysis of Drosophila embryogenesis, we identified several pathways, including the heat-shock response, nuclear protein import and energy production that are regulated during embryo development. In some cases changes in protein expression mirrored transcript levels across development, whereas other proteins showed signatures of post-transcriptional regulation. Taken together, our pilot study provides a solid platform for a more detailed exploration of the embryonic proteome.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteoma/análisis , Proteómica/métodos , Animales , Espectrometría de Masas , Biología de Sistemas
6.
Nucleic Acids Res ; 39(5): 1763-73, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21036870

RESUMEN

Bulk replicative DNA synthesis in eukaryotes is highly accurate and efficient, primarily because of two DNA polymerases (Pols): Pols δ and ε. The high fidelity of these enzymes is due to their intrinsic base selectivity and proofreading exonuclease activity which, when coupled with post-replication mismatch repair, helps to maintain human mutation rates at less than one mutation per genome duplication. Conditions that reduce polymerase fidelity result in increased mutagenesis and can lead to cancer in mice. Whereas yeast Pol ε has been well characterized, human Pol ε remains poorly understood. Here, we present the first report on the fidelity of human Pol ε. We find that human Pol ε carries out DNA synthesis with high fidelity, even in the absence of its 3'→5' exonucleolytic proofreading and is significantly more accurate than yeast Pol ε. Though its spectrum of errors is similar to that of yeast Pol ε, there are several notable exceptions. These include a preference of the human enzyme for T→A over A→T transversions. As compared with other replicative DNA polymerases, human Pol ε is particularly accurate when copying homonucleotide runs of 4-5 bases. The base pair substitution specificity and high fidelity for frameshift errors observed for human Pol ε are distinct from the errors made by human Pol δ.


Asunto(s)
ADN Polimerasa II/metabolismo , ADN/biosíntesis , Disparidad de Par Base , ADN/química , ADN Polimerasa II/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Cinética , Mutación , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
7.
Bio Protoc ; 13(15): e4728, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37575399

RESUMEN

Integral membrane proteins are an important class of cellular proteins. These take part in key cellular processes such as signaling transducing receptors to transporters, many operating within the plasma membrane. More than half of the FDA-approved protein-targeting drugs operate via interaction with proteins that contain at least one membrane-spanning region, yet the characterization and study of their native interactions with therapeutic agents remains a significant challenge. This challenge is due in part to such proteins often being present in small quantities within a cell. Effective solubilization of membrane proteins is also problematic, with the detergents typically employed in solubilizing membranes leading to a loss of functional activity and key interacting partners. In recent years, alternative methods to extract membrane proteins within their native lipid environment have been investigated, with the aim of producing functional nanodiscs, maintaining protein-protein and protein-lipid interactions. A promising approach involves extracting membrane proteins in the form of styrene maleic acid lipid particles (SMALPs) that allow the retention of their native conformation. This extraction method offers many advantages for further protein analysis and allows the study of the protein interactions with other molecules, such as drugs. Here, we describe a protocol for efficient SMALP extraction of functionally active membrane protein complexes within nanodiscs. We showcase the method on the isolation of a low copy number plasma membrane receptor complex, the nicotinic acetylcholine receptor (nAChR), from adult Drosophila melanogaster heads. We demonstrate that these nanodiscs can be used to study native receptor-ligand interactions. This protocol can be applied across many biological scenarios to extract the native conformations of low copy number integral membrane proteins.

8.
Front Cell Dev Biol ; 10: 901351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721519

RESUMEN

Recent studies have shown that hundreds of small proteins were occulted when protein-coding genes were annotated. These proteins, called alternative proteins, have failed to be annotated notably due to the short length of their open reading frame (less than 100 codons) or the enforced rule establishing that messenger RNAs (mRNAs) are monocistronic. Several alternative proteins were shown to be biologically active molecules and seem to be involved in a wide range of biological functions. However, genome-wide exploration of the alternative proteome is still limited to a few species. In the present article, we describe a deep peptidomics workflow which enabled the identification of 401 alternative proteins in Drosophila melanogaster. Subcellular localization, protein domains, and short linear motifs were predicted for 235 of the alternative proteins identified and point toward specific functions of these small proteins. Several alternative proteins had approximated abundances higher than their canonical counterparts, suggesting that these alternative proteins are actually the main products of their corresponding genes. Finally, we observed 14 alternative proteins with developmentally regulated expression patterns and 10 induced upon the heat-shock treatment of embryos, demonstrating stage or stress-specific production of alternative proteins.

9.
Elife ; 112022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575460

RESUMEN

Drosophila nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that represent a target for insecticides. Peptide neurotoxins are known to block nAChRs by binding to their target subunits, however, a better understanding of this mechanism is needed for effective insecticide design. To facilitate the analysis of nAChRs we used a CRISPR/Cas9 strategy to generate null alleles for all ten nAChR subunit genes in a common genetic background. We studied interactions of nAChR subunits with peptide neurotoxins by larval injections and styrene maleic acid lipid particles (SMALPs) pull-down assays. For the null alleles, we determined the effects of α-Bungarotoxin (α-Btx) and ω-Hexatoxin-Hv1a (Hv1a) administration, identifying potential receptor subunits implicated in the binding of these toxins. We employed pull-down assays to confirm α-Btx interactions with the Drosophila α5 (Dα5), Dα6, Dα7 subunits. Finally, we report the localisation of fluorescent tagged endogenous Dα6 during Drosophila CNS development. Taken together, this study elucidates native Drosophila nAChR subunit interactions with insecticidal peptide toxins and provides a resource for the in vivo analysis of insect nAChRs.


Asunto(s)
Insecticidas , Receptores Nicotínicos , Animales , Bungarotoxinas/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Insecticidas/toxicidad , Neurotoxinas , Péptidos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
10.
PLoS One ; 15(8): e0236679, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760087

RESUMEN

The Drosophila shaggy gene (sgg, GSK-3) encodes multiple protein isoforms with serine/threonine kinase activity and is a key player in diverse developmental signalling pathways. Currently it is unclear whether different Sgg proteoforms are similarly involved in signalling or if different proteoforms have distinct functions. We used CRISPR/Cas9 genome engineering to tag eight different Sgg proteoform classes and determined their localization during embryonic development. We performed proteomic analysis of the two major proteoform classes and generated mutant lines for both of these for transcriptomic and phenotypic analysis. We uncovered distinct tissue-specific localization patterns for all of the tagged proteoforms we examined, most of which have not previously been characterised directly at the protein level, including one proteoform initiating with a non-standard codon. Collectively, this suggests complex developmentally regulated splicing of the sgg primary transcript. Further, affinity purification followed by mass spectrometric analyses indicate a different repertoire of interacting proteins for the two major proteoforms we examined, one with ubiquitous expression (Sgg-PB) and one with nervous system specific expression (Sgg-PA). Specific mutation of these proteoforms shows that Sgg-PB performs the well characterised maternal and zygotic segmentations functions of the sgg locus, while Sgg-PA mutants show adult lifespan and locomotor defects consistent with its nervous system localisation. Our findings provide new insights into the role of GSK-3 proteoforms and intriguing links with the GSK-3α and GSK-3ß proteins encoded by independent vertebrate genes. Our analysis suggests that different proteoforms generated by alternative splicing are likely to perform distinct functions.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Glucógeno Sintasa Quinasa 3/fisiología , Animales , Proteínas de Drosophila/genética , Glucógeno Sintasa Quinasa 3/genética , Isoenzimas/fisiología , Proteómica/métodos
11.
J Dev Biol ; 5(4)2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29615571

RESUMEN

The recent development of transposon and CRISPR-Cas9-based tools for manipulating the fly genome in vivo promises tremendous progress in our ability to study developmental processes. Tools for introducing tags into genes at their endogenous genomic loci facilitate imaging or biochemistry approaches at the cellular or subcellular levels. Similarly, the ability to make specific alterations to the genome sequence allows much more precise genetic control to address questions of gene function.

12.
Data Brief ; 9: 771-775, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27844044

RESUMEN

Embryogenesis is one of the most important processes in the life of an animal. During this dynamic process, progressive cell division and cellular differentiation are accompanied by significant changes in protein expression at the level of the proteome. However, very few studies to date have described the dynamics of the proteome during the early development of an embryo in any organism. In this dataset, we monitor changes in protein expression across a timecourse of more than 20 h of Drosophila melanogaster embryonic development. Mass-spectrometry data were produced using a SWATH acquisition mode on a Sciex Triple-TOF 6600. A spectral library built in-house was used to analyse these data and more than 1950 proteins were quantified at each embryonic timepoint. The files presented here are a permanent digital map and can be reanalysed to test against new hypotheses. The data have been deposited with the ProteomeXchange Consortium with the dataset identifier PRIDE: PXD0031078.

13.
Data Brief ; 9: 991-995, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27900350

RESUMEN

Data independent acquisition (DIA) has emerged as a promising mass spectrometry based approach, combining the advantages of shotgun and targeted proteomics. Here we applied a DIA approach (termed SWATH) to monitor the dynamics of the Drosophila melanogaster embryonic proteome upon heat-shock treatment. Embryos were incubated for 0.5, 1 or 3 h at 37 °C to induce heat-shock or maintained at 25 °C. The present dataset contains SWATH files acquired on a Sciex Triple-TOF 6600. A spectral library built in-house was used to analyse these data and led to the quantification of more than 2500 proteins at every timepoint. The files presented here are permanent digital maps and can be reanalysed to search for new questions. The data have been deposited with the ProteomeXchange Consortium with the dataset identifier PRIDE: PXD004753.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA