Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 16(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732595

RESUMEN

While ketogenic diets (KDs) may have potential as adjunct treatments for gastrointestinal diseases, there is little knowledge on how the fat source of these diets impacts intestinal health. The objective of this study was to investigate how the source of dietary fat of KD influences experimental colitis. We fed nine-week-old male C57BL/6J mice (n = 36) with a low-fat control diet or KD high either in saturated fatty acids (SFA-KD) or polyunsaturated linoleic acid (LA-KD) for four weeks and then induced colitis with dextran sodium sulfate (DSS). To compare the diets, we analyzed macroscopic and histological changes in the colon, intestinal permeability to fluorescein isothiocyanate-dextran (FITC-dextran), and the colonic expression of tight junction proteins and inflammatory markers. While the effects were more pronounced with LA-KD, both KDs markedly alleviated DSS-induced histological lesions. LA-KD prevented inflammation-related weight loss and the shortening of the colon, as well as preserved Il1b and Tnf expression at a healthy level. Despite no significant between-group differences in permeability to FITC-dextran, LA-KD mitigated changes in tight junction protein expression. Thus, KDs may have preventive potential against intestinal inflammation, with the level of the effect being dependent on the dietary fat source.


Asunto(s)
Colitis , Colon , Sulfato de Dextran , Dieta Cetogénica , Grasas de la Dieta , Modelos Animales de Enfermedad , Fluoresceína-5-Isotiocianato/análogos & derivados , Ratones Endogámicos C57BL , Animales , Colitis/inducido químicamente , Colitis/dietoterapia , Masculino , Ratones , Grasas de la Dieta/efectos adversos , Colon/patología , Colon/metabolismo , Permeabilidad , Proteínas de Uniones Estrechas/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ácidos Grasos , Dextranos
2.
Nutrients ; 16(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38201850

RESUMEN

Ketogenic diets (KDs) have been studied in preclinical models of intestinal diseases. However, little is known of how the fat source of these diets influences the intestinal barrier. Herein, we studied the impact of four-week feeding with KD high either in saturated fatty acids (SFA-KD) or polyunsaturated linoleic acid (LA-KD) on paracellular permeability of the intestine to iohexol in healthy male C57BL/6J mice. We investigated jejunal and colonic tight junction protein expression, histological changes, and inflammatory markers (Il1b, Il6, Tnf, and Lcn2), as well as the activity and expression of intestinal alkaline phosphatase (IAP) in feces and jejunal tissue, respectively, and plasma lipopolysaccharide. KDs did not change intestinal permeability to iohexol after two or twenty-six days of feeding regardless of fat quality. SFA-KD, but not LA-KD, upregulated the colonic expression of tight junction proteins claudin-1 and -4, as well as the activity of IAP. Both KDs resulted in increased epithelial vacuolation in jejunum, and this was pronounced in SFA-KD. Jejunal Il1ß expression was lower and colonic Il6 expression higher in LA-KD compared to SFA-KD. In colon, Tnf mRNA was increased in LA-KD when compared to controls. Overall, the results suggest that KDs do not influence intestinal permeability to iohexol but elicit changes in colonic tight junction proteins and inflammatory markers in both jejunum and colon. Future research will show whether these changes become of importance upon proinflammatory insults.


Asunto(s)
Dieta Cetogénica , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Claudinas/genética , Yohexol , Funcion de la Barrera Intestinal , Interleucina-6/genética , Ácido Linoleico , Proteínas de Uniones Estrechas/genética , Fosfatasa Alcalina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA