RESUMEN
Liver dysfunctions are classified into acute and chronic diseases, which comprise a heterogeneous group of pathological features and a high mortality rate. Liver transplantation remains the gold-standard therapy for most liver diseases, with concomitant limitations related to donor organ shortage and lifelong immunosuppressive therapy. A concept in liver therapy intends to overcome these limitations based on the secreted extracellular vesicles (EVs; microvesicles and exosomes) by mesenchymal stem/stromal cells (MSCs). A significant number of studies have shown that factors released by MSCs could induce liver repair and ameliorate systemic inflammation through paracrine effects. It is well known that this paracrine action is based not only on the secretion of cytokines and growth factors but also on EVs, which regulate pathways associated with inflammation, hepatic fibrosis, integrin-linked protein kinase signaling, and apoptosis. Herein, we extensively discuss the differential effects of MSC-EVs on different liver diseases and on cellular and animal models and address the complex molecular mechanisms involved in the therapeutic potential of EVs. In addition, we cover the crucial information regarding the type of molecules contained in MSC-EVs that can be effective in the context of liver diseases. In conclusion, outcomes on MSC-EV-mediated therapy are expected to lead to an innovative, cell-free, noninvasive, less immunogenic, and nontoxic alternative strategy for liver treatment and to provide important mechanistic information on the reparative function of liver cells.
Asunto(s)
Exosomas , Vesículas Extracelulares , Hepatopatías , Células Madre Mesenquimatosas , Animales , Vesículas Extracelulares/metabolismo , Inflamación/metabolismo , Hepatopatías/metabolismo , Hepatopatías/terapiaRESUMEN
The integrity of the actively transcribed genome against helix-distorting DNA lesions relies on a multilayered cellular response that enhances Transcription-Coupled Nucleotide Excision Repair (TC-NER). When defective, TC-NER is causatively associated with Cockayne-Syndrome (CS), a rare severe human progeroid disorder. Although the presence of unresolved transcription-blocking lesions is considered a driver of the aging process, the molecular features of the transcription-driven response to genotoxic stress in CS-B cells remain largely unknown. Here, an in-depth view of the transcriptional and associated chromatin dynamics that occur in CS-B cells illuminates the role of CSB therein. By employing high-throughput genome-wide approaches, we observed that absence of a functional CSB protein results in a delay in transcription progression, more positioned +1 nucleosomes, and less dynamic chromatin structure, compared to normal cells. We found that early after exposure to UV, CS-B cells released RNA polymerase II (RNAPII) from promoter-proximal pause sites into elongation. However, the magnitude of this response and the progression of RNAPII were reduced compared to normal counterparts. Notably, we detected increased post-UV retainment of unprocessed nascent RNA transcripts and chromatin-associated elongating RNAPII molecules. Contrary to the prevailing models, we found that transcription initiation is operational in CS-B fibroblasts early after UV and that chromatin accessibility showed a marginal increase. Our study provides robust evidence for the role of CSB in shaping the transcription and chromatin landscape both in homeostasis and in response to genotoxic insults, which is independent of its known role in TC-NER, and which may underlie major aspects of the CS phenotype.
RESUMEN
Flaviviruses such as dengue virus (DENV) and Zika virus (ZIKV) have evolved sophisticated mechanisms to suppress the host immune system. For instance, flavivirus infections were found to sabotage peroxisomes, organelles with an important role in innate immunity. The current model suggests that the capsid (C) proteins of DENV and ZIKV downregulate peroxisomes, ultimately resulting in reduced production of interferons by interacting with the host protein PEX19, a crucial chaperone in peroxisomal biogenesis. Here, we aimed to explore the importance of peroxisomes and the role of C interaction with PEX19 in the flavivirus life cycle. By infecting cells lacking peroxisomes we show that this organelle is required for optimal DENV replication. Moreover, we demonstrate that DENV and ZIKV C bind PEX19 through a conserved PEX19-binding motif, which is also commonly found in cellular peroxisomal membrane proteins (PMPs). However, in contrast to PMPs, this interaction does not result in the targeting of C to peroxisomes. Furthermore, we show that the presence of C results in peroxisome loss due to impaired peroxisomal biogenesis, which appears to occur by a PEX19-independent mechanism. Hence, these findings challenge the current model of how flavivirus C might downregulate peroxisomal abundance and suggest a yet unknown role of peroxisomes in flavivirus biology.