Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(15): 5562-7, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706892

RESUMEN

The kinesin-3 family is one of the largest among the kinesin superfamily and its members play important roles in a wide range of cellular transport activities, yet the molecular mechanisms of kinesin-3 regulation and cargo transport are largely unknown. We performed a comprehensive analysis of mammalian kinesin-3 motors from three different subfamilies (KIF1, KIF13, and KIF16). Using Forster resonance energy transfer microscopy in live cells, we show for the first time to our knowledge that KIF16B motors undergo cargo-mediated dimerization. The molecular mechanisms that regulate the monomer-to-dimer transition center around the neck coil (NC) segment and its ability to undergo intramolecular interactions in the monomer state versus intermolecular interactions in the dimer state. Regulation of NC dimerization is unique to the kinesin-3 family and in the case of KIF13A and KIF13B requires the release of a proline-induced kink between the NC and subsequent coiled-coil 1 segments. We show that dimerization of kinesin-3 motors results in superprocessive motion, with average run lengths of ∼10 µm, and that this property is intrinsic to the dimeric kinesin-3 motor domain. This finding opens up studies on the mechanistic basis of motor processivity. Such high processivity has not been observed for any other motor protein and suggests that kinesin-3 motors are evolutionarily adapted to serve as the marathon runners of the cellular world.


Asunto(s)
Evolución Biológica , Proteínas Portadoras/química , Cinesinas/química , Microtúbulos/metabolismo , Modelos Moleculares , Animales , Transporte Biológico/fisiología , Células COS , Chlorocebus aethiops , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Cinética , Microscopía Fluorescente
2.
Sci Rep ; 7(1): 2502, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28566755

RESUMEN

Although the mechanisms that balance self-renewal and differentiation of a stem cell lineage have been extensively studied, it remains poorly understood how tissues that contain multiple stem cell lineages maintain balanced proliferation among distinct lineages: when stem cells of a particular lineage proliferate, how do the other lineages respond to maintain the correct ratio of cells among linages? Here, we show that Merlin (Mer), a homolog of the human tumor suppressor neurofibromatosis 2, is required to coordinate proliferation of germline stem cells (GSCs) and somatic cyst stem cells (CySCs) in the Drosophila testis. Mer mutant CySCs fail to coordinate their proliferation with that of GSCs in multiple settings, and can be triggered to undergo tumorous overproliferation. Mer executes its function by stabilizing adherens junctions. Given the known role of Mer in contact-dependent inhibition of proliferation, we propose that the proliferation of CySCs are regulated by crowdedness, or confluency, of cells in their lineage with respect to that of germline, thereby coordinating the proliferation of two lineages.


Asunto(s)
Proliferación Celular/genética , Neurofibromina 2/genética , Células Madre/citología , Testículo/crecimiento & desarrollo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Masculino , Transducción de Señal/genética , Nicho de Células Madre/genética , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA